
Dynamic Information Visualization

Yannis E. l oann id i s "t
Department of Computer Sciences, University of Wisconsin, Madison, WI 53706

yannis@cs.wisc.edu

Abstract
Dynamic queries constitute a very powerful mechanism for infor-
mation visualization; some universe of data is visualized, and this
visualization is modified on-the-fly as users modify the range of in-
terest within the domains of the various attributes of the visualized
information. In this paper, we analyze dynamic queries and offer
some natural generalizations of the original concept by establishing
a connection to SQL. We also discuss some implementation ideas
that should make these generalizations efficient as well.

1 I n t r o d u c t i o n

Dynamic queries [1, 3, 6] have been introduced as a mecha-
nism that achieves three goals:

• compared to using textual languages (e.g., SQL), users
can query data in a directed-manipulation manner that
shortens learning time, speeds performance, lowers error
rates, and increases human retention over time;

• the query result is immediately visualized; and
• the queries are parameterized and the parameters can

be modified dynamically, with the corresponding query
results being modified accordingly as well.

The following example is used throughout this paper to il-
lustrate the concepts introduced. Although there are several
details or variations of dynamic queries that are not captured
in this example, we believe that it is representative of their
most important features. (For example, although some ex-
isting dynamic-query systems do capture disjunctive queries,
we will concentrate on conjunctive queries only.) Consider
the set of employees of a company, and assume that the at-
tributes of interest are name, salary, age, and department.
A typical display of this information and the corresponding
control panel for dynamic queries may be as shown in Fig-
ure 1. The left side of the figure is occupied by a display of
points in the salary-age space,each point representing an em-
ployee with the corresponding salary and age. The shape of
each point represents the corresponding employee's depart-
ment. The right side of the figure is occupied by double-
dragbox sliders, one for each of the data attributes (name,
salary, age, and department). By moving the left dragbox of
a slider, users specify the minimum value of interest in the

* Partially supported by the National Science Foundation under Grants
IRI-9224741 and IRI-9157368 (PYI Award) and by grants from DEC, IBM,
HP, AT&T, Oracle, and lnformix.

t We want to thank Richard Biegle and Ben Shneiderman for many
useful comments on an earlier draft.

100

ag

-1 o

c

c

a . a

c : =
a

, =

a .1 ~ a :
=

a

e

o s~ary loo0

E M P L O Y E E S

19 8 2

age

2 7 9 5 0

a n ~

A b r a m s Z o o k

n m

Aa Sports

Figure 1: Typical display for dynamic queries

corresponding attribute. Similarly, its right dragbox indicates
the maximum value of interest. As users adjust the dragboxes
of some slider, points on the data display disappear or reap-
pear, based on whether or not their corresponding attribute
values fall within the specified range.

Using SQL as a vehicle to express the textual equivalents
of the visual dynamic queries, one may view the query of
Figure 1 as equivalent to the following family of queries:

select *
f rom EMP
where name between C 1 and C2

and age between C3 and C4
and salary between C5 and C6
and department between C7 and C8.

(Without loss of generality, we assume in the above that
all data comes from a single relation EMP.) By moving the
sliders, users instantiate the constant parameters C 1-C8, and
the entire set of attributes of the qualifying EMP tuples are
visualized in the chosen fashion.

In this short paper, we introduce some slightly different
conceptual interpretations of dynamic queries and, based on

16 S I G M O D R e c o r d , Vol. 25, No . 4, D e c e m b e r 1996

those, propose some generalizations. We also provide some
thoughts on how these generalizations may be implemented
by modifying the data structures that are typically used in
existing dynamic-query systems.

2 Mul t ip l e Interact ing D y n a m i c Quer ies

One can easily imagine situations where users need to ex-
plore via dynamic queries multiple universes of data, e.g., to
identify correlations between their attributes. This presents
no technical or conceptual difficulty for unrelated universes;
in fact, in this case, there is no reason for having more than
one of them on the screen at the same time. The interesting
case is when between these universes there are conceptual
connections that need to be explored. Then, as users manip-
ulate the sliders associated with one such set, they would ex-
pect to see the visualizations of the other sets being affected
as well. This requires that the result of a dynamic query be
considered a proper, named data set itself that can, in turn,
be used as input in another dynamic query as well. In tech-
nical terms, a dynamic query should be seen as essentially a
dynamic view that is visually materialized.

a c
¢

a

= ,I =

=

= ,I e~ z
o

o

m l a r y 10(~

EMPLOYEES
19 82

a p

27 95O

o, ailmry

Abrams Zook

n l l m e

~ m m k ~ r ~
~ DEPMrrMENTS

~ , DEP~rrME~m
~g

0 budget ~

DEPARTMENTS
4 43

fk~"

770 8420

Art Sports

n l lm

' ~ EMPLOYEES

Cray Ron

m ~ g m "
in -
~ EMPLOYEES

Figure 2: Possible display for multiple interacting dynamic
queries

Continuing with our example, assume that in addition to a
company's employees (relation EMP), our interests include
the set of its departments (relation DEPT), with attributes the
department's name, floor, budget, and manager. The two sets
are naturally connected through the department of an em-
ployee and/or the manager of a department. Exploring these
connections is achieved by defining two dynamic views, say
EMPLOYEES and DEPARTMENTS, one of which may re-
fer to the other through (semi-)joins. For instance, the defi-
nition of EMPLOYEES could be as follows:

create view EMPLOYEES as
select *
from EMP
where name between C 1 and C2

and age between C3 and C4
and salary between C5 and C6
and department between C7 and C8
and (C9 or (name in

(select manager from DEPARTMENTS)))
and (C l0 or (department in

(select name from DEPARTMENTS))).

In the above, C9 and C10 are boolean constants. Users can
set each one to 'False' or 'True' to indicate whether or not
EMPLOYEES and DEPARTMENTS are tightly coupled, re-
spectively. C9 corresponds to the potential coupling on a de-
partment's name, while C 10 corresponds to the potential cou-
pling on a manager's name. Figure 2 shows one possible ex-
ample of the corresponding dynamic visual setup (ignore the
switches indicated by 3 and 4). Switches 1 and 2 correspond
to the variables C9 and C10, respectively. Switch 1 is set to
- , which corresponds to C9='True', indicating that the DE-
PARTMENTS dynamic view does not affect the one of EM-
PLOYEES through the manager's name connection (i.e., the
displayed EMPLOYEES do not have to be managers of one
of the displayed DEPARTMENTS). Switch 2 is set to 5.n,
which corresponds to C 10='False', indicating that there is in-
deed coupling through the departments's name. Note that by
presenting everything as a semijoin, these switches remain
local to the area dedicated to employees like the attribute slid-
ers, so their use should be rather intuitive.

The department name and manager name attributes can
also be used in the opposite direction, i.e., to impose restric-
tions in the DEPARTMENTS view. In this case, switches
3 and 4 of Figure 2 should be present and switches 1 and 2
should be ignored. Setting all switches to 5.n at the same
time gives rise to mutually recursive queries, which are likely
to be computationally expensive and have semantics that are
confusing to most users. Therefore, we believe that interac-
tions between dynamic views should always be in one direc-
tion. The only exception is when there is only one connect-
ing attribute between the two sets. In that case, mutual cou-
pling between two dynamic views presents no problem (in
fact, what arises is bounded recursion [2]).

S I G M O D R e c o r d , Vol . 25, No . 4, D e c e m b e r 1996 17

3 General Dynamic Views
As we have seen above, by looking at dynamic queries as dy-
namic views, one may define other views in terms of them.
In that case, we say that the dependent view (e.g., EMPLOY-
EES) is defined in terms of the determining view (e.g., DE-
PARTMENTS). This can be applied at arbitrary levels, with
dynamic views being defined in terms of dynamic views that
are also defined i , terms of dynamic views, etc, as long as
no recursion is formed. As the parameters of some dynamic-
view definition are modified (through slider actions), the vi-
sualizations of the results of all dependent views will poten-
tially change as well. These visualizations may appear in dif-
ferent areas or superimposed, if that makes sense.

Dynamic-view definitions may in principle be arbitrary
queries, each having its own possibly parameterized qualifi-
cations and even arbitrary target lists. For example, the slid-
ers of dynamic queries are used as output devices as well:
whenever the visualization changes, the dragboxes of all the
sliders are adjusted to indicate the minimum and maximum
values of the corresponding attributes among the data points
that are currently displayed. Thus, the slider for, say, the age
attribute can be seen as a visualization of the result of the fol-
lowing family of views built on top of EMPLOYEES:

select min(age), max(age)
from EMPLOYEES.

In addition to simple aggregates, other typical target lists
may be functions of individual attribute values (e.g., arith-
metic functions on numeric fields) or aggregate functions on
attributes, all involving data related to a single universe. For
example, on top of Figure 1 one may superimpose the aver-
age salary and age per department as solid-black points of the
corresponding shape placed at the appropriate coordinates
(Figure 3). These would correspond to the dynamic query

sdeet department, avg(age), avg(salary)
from EMPLOYEES
group by department.

4 Parameterized Functions

As mentioned above, one of the possibilities for dynamic
views calls for target lists that involve functions of existing
values assigning new values to one or more of the attributes
of some elements. Depending on the application, there may
be functions that are important and commonly occurring.
Just as the qualifications of dynamic views/queries can be pa-
rameterized, in exactly the same way their target lists can be
parameterized as well to generate a separate family of func-
tions, each parameter being associated with a slider. Users
can then explore the possible values of these parameter and
observe the effect that the corresponding queries have on the
relevant visualizations.

For example, the EMPLOYEES dynamic view may have
the following target list:

10(

' : " o

4 "

a : : a
a

.3

. ' . : `3
] c

a `3 a =
=

a

=

EMPLOYEES

19 82

age

27 950

salary

Abrams Zook

name a

Art Sports

department

0 salary 1000

Figure 3: Salary-age space superimposed with averages per
department

select name,
age = age + C l 1,
salary = (1 + Cl2)*salary,
department.

Associated with the age and salary attributes are increment
and decrement buttons that correspond to the C l l and Cl2
parameters (Figure 4). Users can manipulate these buttons to

100

age

`3

,3 `3 o
`3

c,

3 g

`3 o

o

D

o

on `3 =

o

,= `3

o
o

o

=

.3

`3
o

0 salary

`3

El

c3

o

`3

o

`3

EMPLOYEES i
19 82

age
2

front now

27 950

salary

I misa

a

Abrams Zook

name
Art Sports

g_2_
100(department

Figure 4: Salary-age space controllable through parameter-
ized salary and age functions

specify what values should be visualized for these attributes
of the qualifying tuples. (The buttons could have been re-
placed by sliders that can take only specific values if the ap-
plication required such a restriction.) When users push on

18 S I G M O D R e c o r d , Vol . 25, N o . 4, D e c e m b e r 1996

the increment (resp. decrement) button of age, all visual-
ized points move up (resp. down) by the indicated amount.
When users push on the increment (resp. decrement) button
of salary, all visualized points move to the right (resp. left)
by the indicated percentage. Moreover, all other relevant vi-
sualizations on the screen are affected accordingly.

5 Hypothetical (What-If) Updates
Motivated by the above example, we now discuss one more
alternative conceptualization of some dynamic queries. In
particular, we concentrate on dynamic queries that visualize
existing objects (i.e., in SQL terms, queries whose target lists
involve attributes of objects in the same relation) and not
defined in terms of other dynamic views. In the traditional
conceptualization of dynamic queries, the query result is
continuously modified as the sliders of the relevant attributes
are manipulated for specifying what is to be visualized. In
an equivalent view of the process, the database contents are
continuously hypothetically modified as the sliders of the
relevant attributes are manipulated for specifying what is not
to be hypothetically deleted (or reinserted).

For example, in this approach, instead of the query given in
Section 1 above, Figure 1 corresponds to the following SQL

statement (we take the liberty to use the keyword hypothet-
ical in front of updates to emphasize that no actual database
modification takes place and also the keyword retain in to
denote the complement of delete from 1):

hypothetical retain in EMPLOYEES
where name between C1 and C2

and age between C3 and C4
and salary between C5 and C6
and department between C7 and C8.

This now allows us to introduce all other forms of hypo-
thetical database modification. In particular, we may take
dynamic queries whose target lists include functions on at-
tribute values (Figure 4) and treat those as hypothetical up-
dates. While in the traditional interpretation, nonqualify-
ing objects are hypothetically deleted, in this interpretation,
they are still visualized, but retain their original values in all
their attributes (while those qualifying have their correspond-
ing attribute values changed based on the update functions).
Thus, users can choose one of two different modes (delete
or update) and, with essentially very similar actions, perform
two rather different visual explorations of the data.

6 Implementation Thoughts
One of the primary reasons for the success of current dynamic-
query systems is their efficiency. User actions on the slid-
ers are immediately reflected in the visualization of the corre-
sponding set (response times in the order of lOOms [6, 7]). A

1That is 'retain in R where Q' is equivalent to 'delete from R where
not Q'.

crucial question that arises is how efficiently can the general-
izations mentioned above be implemented. We will only dis-
cuss the issue of joins, i.e., visualizations of multiple tightly
coupled universes (Figure 2). In particular, we will show how
to adapt one of the currently used data structures [4] (the Grid
File for disk-based data or Grid Array for memory-resident
data) for visualizing individual universes so that it can be
used for multi-universe visualizations. For the most part, all
current systems assume that all data resides in memory, so
we also make that assumption and concentrate on Grid Ar-
rays. The essence of our discussion, however, is not affected
by this assumption, and our adaptations are equally valid for
Grid Files as well.

Grid arrays/files are quite well known [5], so we do not de-
scribe them in any detail. For dynamic queries on an individ-
ual universe (Figure 1), the grid has as many dimensions as
there are attributes in the universe, e.g., that for employees
will have four dimensions. Every bucket of the grid captures
a hyper-rectangle of the four-dimensional space and includes
a list of pointers (or range of pointers, if clustered) to the
records whose values fall within the ranges corresponding to
the bucket on all dimensions. A simple example from a two-
dimensional space (e.g., salary and department) is shown in
Figure 5 (essentiallycopied from [4]).

Slider 2 i

S l i d e r 1
J

L_c r

i : =

: i

i i

J
i

L

i

: i

E M P Index

E M P objects

Figure 5: Grid array for two-dimensional space of employees

To manage two universes that are tightly coupled through
one attribute (generalizing to multiple attributes is straight-
forward, as long as no recursion arises), their grid arrays re-
main intact, each based on the attributes that can be manip-
ulated by their corresponding sliders. The actual object ar-
rays are enhanced with the following information. First, ev-
ery object of the determining universe points to all the ob-
jects of the dependent universe that it is associated with. Re-
turning to our example, consider the EMPLOYEES dynamic
view and assume that the only potential connection between
EMPLOYEES and DEPARTMENTS is through the depart-
ment's name. Then, the proposed data structure will have
every DEPT object pointing to all the EMP objects with the
same department name (Figure 6). For elements that are dan-
gling (e.g., departments with no employees), there will be no

S I G M O D R e c o r d , Vol. 25, No. 4, D e c e m b e r 1996 19

E-S l ide r 2

E-,Sltder I

EMP Index

EMP objects

. . . .)

DEPT o b l e c t l

L_

: r>

r

I D -S l ide r 2

. D -S l ide r I

DEPT Index

Figure 6: Connection of grid array for spaces of employees and departments

such pointer.

Second, every object of the dependent universe stores the
number of currently visible objects in the determining uni-
verse that are associated with it. (This is not shown in the
figure; it would be one additional field in the EMP objects,
whose value could be 1 or 0, since every employee is associ-
ated with at most one department.)

The above data structures should make the interaction be-
tween the two dynamic views (actually any two dynamic
views that are tightly coupled) rather efficient. For example,
any modification on the DEPARTMENTS sliders already vis-
its all the DEPT objects that are to disappear or reappear in
the DEPARTMENTS visualization. Now, their pointers to
EMP objects will has-e to be dereferenced as well so that the
corresponding EMP objects also disappear or reappear (the
latter if the corresponding employees satisfy all the other con-
ditions on the employee sliders). In the process, the addi-
tional field on EMP objects mentioned above will be updated,
so that subsequent manipulations of the EMP sliders can im-
mediately check to see if the appropriate EMP objects are
visible or not with respect to their connections with visible
DEPT objects.

Finally, note that in the above example, there is a func-
tional dependency from the dependent universe to the de-
termining universe (more precisely, from employees to the
attributes of departments). In that case, an alternative im-
plementation is to build an index on the dependent universe
(EMP) that involves the attributes of both universes. (Un-
less there is also a referential integrity constraint, the do-
main of the determining attributes should include the null
value.) Then, any manipulation of the DEPARTMENTS slid-
ers would trigger the same processing actions on two indices,
the one on EMP and the other on DEPT. In this approach,
there is no need for the direct object-to-object pointers men-
tioned earlier. Which of the two approaches is more efficient
is an interesting open question that we plan to investigate in
the future.

In the absence of the appropriate functional dependencies,
the second approach cannot be directly applied. It would re-
quire that duplicates of the dependent objects be maintained,
or at least multiple pointers from the index to the same object.
For example, if DEPARTMENTS depended on EMPLOY-

EES, every department would have to be replicated once for
each employee in it. This duplication is likely to hamper per-
formance, something that we also intend to investigate in an
upcoming study.

7 Conclusions
We have presented some new conceptualizations of dynamic
queries, and based on these, we have described some general-
izations. We have argued that the resulting interfaces should
be rather intuitive to users and have also discussed informally
how they can be implemented so that response time remains
within acceptable limits. We intend to implement the above
ideas and test their effectiveness and efficiency.

References
[I] C. Ahlberg and B. Shneiderman. Visual information

seeking: Tight coupling of dynamic query filters with
starfield displays. In Proc. CH194 Conference on Human
Factors in Computing Systems, pages 313-317, Boston,
MA, April 1994.

[2] Y. Ioannidis. A time bound on the materialization
of some re, cursively defined views. Algorithmica,
1(4):361-385, October 1986.

[3] IVEE Development AB, Goteborg, Sweden.
http://www.ivee.com, June 1996.

[4] V. Jain and B. Shneiderman. Data structures for dynamic
queries: An analytical and experimental evaluation. In
Proc. 2nd International Workshop on Advanced Visual
Interfaces, Bari, Italy, May 1994.

[5] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The grid
file: An adaptable, symmetric multikey file structure.
ACM Transactions on Database Systems, 9(1):38-71,
March 1984.

[6] B. Shneiderman. Dynamic queries for visual information
seeking. IEEE Software, 11 (6):70-77, November 1994.

[7] E. Tanin, R. Beigel, and B. Shneiderman. Incremental
data structures and algorithms for dynamic query inter-
faces. ACM-SIGMOD Record, 24(4), December 1996.

20 S I G M O D R e c o r d , Vol. 25, No. 4, D e c e m b e r 1996

