
Self-Deadlocks in Disparate Scientific Data Management Systems

Fragkiskos Pentaris and Yannis Ioannidis
Department of Informatics and Telecommunications,

University of Athens,
Panepistimioupolis, 15771, Athens, Greece

{frank,yannis}@di.uoa.gr

Abstract

In large statistical and scientific data management envi-
ronments, where mediation architectures are used to inte-
grate disparate and autonomous systems, a new problem —
self-deadlock — may cause global transaction failures. In
this short paper we briefly examine the reasons causing this
problem and identify some algorithms for resolving it.

1. Introduction

Recently, the idea of using Wide Area Network(WAN)
distributed architectures for constructing scientific data
management systems (SDMSs) has gain a lot of support-
ers (e.g., the Grid). Figure 1 shows an example of such a
system, consisting of a few network nodes. Each of them is
an autonomous “black box” that may export/import a sub-
set of its local data and resources to/from remote nodes.
Using such a system, scientists can access any avail-
able distant information held at remote nodes, which,
in turn, may transparently import/export this informa-
tion from/to other ones.

We expect that data-consumers will not always be aware
of the actual origin of the data they use or update. For in-
stance, in Figure 1 a scientist at node A asks for some
pieces of information from node B while updating some
data at node C. Both of these nodes are actually import-
ing their data from a single DBMS. Thus, node A is actu-
ally querying and updating information stored in the same
DBMS node. Such kind of multi-path accesses, may ex-
ist for performance, security, policy, distributed design, or
user-preference reasons, or even simply by mistake. How-
ever, local concurrency control (CC) mechanisms of remote
nodes (e.g., the DBMS) will most likely disallow the use of
two different, yet semantically correct, access paths, if they
conflict with each other (e.g., they both access the same in-
formation and one of them leads to an update). We call this

Figure 1. Distributed SDM.

type of failure, caused by CC conflicts between local trans-
actions participating in the same global one, a self-deadlock.

Proposed distributed transaction models and CC algo-
rithms (e.g., [2, 3]) cannot be used to solve the problem of
self-deadlocks [4] and usually cause global transaction fail-
ures (see for example the recommendations in the IBM DB2
DataJoiner manual [1]) or lead to a livelock condition where
distributed transactions are restarted and killed indefinitely
[4]. In this short paper, we briefly examine the problem of
self-deadlocks, present the conditions that must be satisfied
for the problem to occur, identify some methods to resolve
it and discuss some experimental results showing that un-
der certain conditions, self-deadlock resolution is a feasible
and beneficial task. Further details on self-deadlocks can be
found in the long version of the paper [4].

2. Execution Environment

In this short paper we consider Internet-based, dis-
tributed SDMSs composed of many disparate nodes.
The nodes persistently store information (storage nodes),
and/or act as intelligent read-write “gateways” to informa-
tion held by other nodes. Multi-path accesses to the same
data on the same node are allowed, though, we do not re-
quire from nodes to be aware of the actual origin of the
source data.

Local transactions (LT) are started either implic-

Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM’04) 
1099-3371/04 $ 20.00 © 2004 IEEE 



itly, when a remote node retrieves or updates data held in a
storage node for the first time, or explicitly, when this is re-
quested by the remote node. The initiating node is always
the owner of the transaction, i.e. the only one that can com-
mit its work. Global transactions (GT) are started whenever
a query requires information residing in more than one re-
mote storage nodes. We do not assume that a two-phase
commit protocol is used, as Internet-exposed nodes and
proprietary systems are usually not able or willing to par-
ticipate in such protocols [5].

3. General Deadlocks

The lack of information on the locks that have been ob-
tained by remote nodes participating in a GT leads to a self-
deadlock condition. Generally, a self-deadlock occurs iff an
(update) query submitted to a node requires locks that are
already granted to a different local transaction that is part
of the same global transaction. This is in contrast to tradi-
tional distributed deadlocks, which occur iff there is cycli-
cal waiting of local transactions for locks granted to local
transactions of different global transactions.

Since traditional deadlocks and self-deadlocks have
many similarities, we have combined these two prob-
lems into a more general concept named general dead-
lock [4] using a hybrid wait-for-locks (WFL) graph.
The nodes of this graph are the GTs and their respec-
tive LTs. A directed arc may connect either two LTs
nodes that belong to different GTs, or a GT node to
one of its LTs nodes. In the first case, the arc indi-
cates that the source LT is blocked waiting for the target
LT to release certain locks. The second type of arcs ex-
ists only on self-deadlock prone systems and indicates that
the source GT is waiting for the specific target LT to fin-
ish its work.

4. Detection and Resolution of Self-Deadlocks

The identification of general deadlocks, is especially
useful for ensuring that in the environments that we con-
sider, all global transactions manage to successfully com-
plete their processing. This is only possible when systems
run avoidance or detection algorithms capable of discov-
ering both types of deadlocks. Unfortunately, avoidance is
not always possible unless someone knows before-hand all
queries and data manipulation statements participating in
GTs. Thus, we have limited ourselves in detecting and re-
solving self-deadlocks.

Both traditional deadlocks and self-deadlocks are de-
tectable using a slightly modified nodes-chasing algorithm.
However, we cannot modify any of the existing traditional
deadlock resolution algorithms to make them capable of
also resolving self-deadlocks. Therefore, in [4], we propose
three new methods to resolve them, named locks release,
locks sharing and proxy execution.

5. Overhead of Resolving Self-Deadlocks

Systems designers must carefully select the proper
method for detecting and recovering from general-
deadlocks. A pessimistic method will assume that all
GT failures are due to self-deadlocks and immedi-
ately runs a self-deadlock detection and resolution algo-
rithm. A more optimistic approach will simply ignore
self-deadlocks (i.e., this is what existing systems cur-
rently do) and assume that GT failures are due to
traditional deadlocks. The offending GTs will be re-
tried for a number of times and if all retries fail, then
they will be aborted and application-supplied alterna-
tive GTs will run. Finally, a hybrid approach may as-
sume that all GT failures are due to self-deadlocks and yet,
only run the detection algorithm. If this algorithm indi-
cates that a self-deadlock has occurred, then the offending
GT will be aborted and an application-supplied alterna-
tive GT will run (i.e., no self-deadlock resolution algorithm
is run).

In [4], we provide analytical functions estimating the
cost of each of the above approaches. Furthermore, we pro-
vide the results of a set of experiments proving our ana-
lytical results. These experiments show that the overheads
of resolving self-deadlocks may be substantial and depend
on the number of nodes, their interconnection topology, the
network latency and the frequency of self-deadlocks. The
experiments further prove that depending on the probabil-
ity of self-deadlocks, the use of a hybrid or pessimistic ap-
proach for handing self-deadlocks may be beneficial to sim-
ply ignoring the problem of self-deadlocks (optimistic ap-
proach).

References

[1] I. Corp. DB2 DataJoiner Version 2, Administration Supple-
ment, chapter 6, Distributed Unit of Work (DUOW) Transac-
tions, pages 59–78. IBM Corp., 1998.

[2] V. Gligor and R. Popescu-Zeletin. Distributed Data Shar-
ing Systems, chapter Concurrency control issues in distributed
heterogeneous database management systems, pages 43–56.
North Holland Publishing Company, 1985.

[3] G. Kappel, S. Rausch-Schott, W. Retschitzegger, and
M. Sakkinen. Multi-parent subtransactions, covering the
transactional needs of composite events. In Proc. of Int. Work-
shop on (ATMA), Coa (India), Sept. 1996.

[4] F. Pentaris and Y. Ioannidis. Self-Deadlocks in Dis-
parate Scientific Data Management Systems. Available at,
http://www.di.uoa.gr/∼frank/ssdbml04.pdf,
2004.

[5] A. Zhang, M. Nodine, and B. Bhargava. Global scheduling
for flexible transactions in heteogenious distributed database
systems. IEEE TKDE, 13:439–450, 2001.

Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM’04) 
1099-3371/04 $ 20.00 © 2004 IEEE 


