FROG and TURTLE: Visual Bridges Between Filesand Object-Oriented Data* '

Vaishnavi Anjur

YannisE. loannidisf

Miron Livny

Department of Computer Sciences, University of Wisconsin, Madison, WI 53706
{vaish,yannismiron}@cs.wisc.edu

Abstract

The problem of trandating database objects into a flat for-
mat to be written out in aflat Ascii file or, conversely, trans-
lating the contents of a file into a complex database object
arisesin severd applications. Itisespecially important in sci-
entific database applications, where file-based communica
tion with externa programs (e.g., visualization packages or
model simulations) is very common. We introduce Frog, a
visual tool that can be used to specify trandations between
database objects and flat files, requiring no programming by
the user. The tool can dea with objects of arbitrary com-
plexity, without the object complexity being directly reflected
in the complexity of the corresponding visual interaction.
Based on thevisua actions of the user, thetool storesenough
information in a map-file, whose contents are used a run-
time by another tool, Turtle, to trand ate any chosen database
object into the appropriate file layout. The tool has been de-
veloped as part of the ZOO desktop Experiment Management
Environment and has been used by afew experimental scien-
tistswith success.

1 Introduction

Many applicationsexist that requirean Object-Oriented Data-
base System (OODBMYS) to be communicating with other,
external, software, sending data to it or receiving data from
it. For example, database data may be sent out for some
complex computations to be performed on it (possibly by
legacy software) with the results coming back to be stored
in the database as well. Very often this communication is
achieved through Ascii files (or Ascii byte streams) because
of the heterogeneity of the overal system. For example,
the external software may have been built independently of
the OODBMS and may support a file-based 1/0 interface;
or it may simply support an interface that is different from
that of the OODBMS and files are a convenient intermedi-
ate representation for the data to be communicated. Hence,
the OODBM Smust have the ahility to trand ate any complex
database object intoaflat structureto bewrittenoutintoafile,
ortoread inafileandtrandateitsflat contentsinto acomplex
object. Thisability isalso necessary in order for legacy data

* Work supported in part by the National Science Foundation under
Grant IRI-9224741.

t We would like to acknowledge Tom Wang for his significant effort in
implementing Frog and Turtle.

+ Additionally supported in part by the National Science Foundation
under Grant IRI-9157368 (PY | Award) and by grants from DEC, IBM, HP,
AT&T, Oracle, and Informix.

to be loaded into a database so that future access to the data
can be done through the OODBMS.

The above functionality is especialy critical for scientific
databases, since they are associated with applications that
haveall theabovecharacteristics. For example, datastoredin
scientific databases often needs to be sent out to specialized
visualization programsto be visualized, or to statistical soft-
ware for anaysis, or to modeling packages for simulation,
with theresults (of thelast two typesof software) stored back
intothedatabase. Experiment management, whichisour em-
phasisand main motivation, also generates similar scenarios.
An experiment management system needs to communicate
with the experimentation environment (beit amodel smula-
tion program, an automated assembly of instruments, or even
ahuman that “manually” operates on instruments) to send re-
guestsfor experimentswith specific input and tol ater receive
the experiment output for storage.

Trandlation between database data and files is often hard-
coded into existing systems, e.g., bulk loading facilities in
most commercial OO and relational DBM Ss. Thisisundesir-
able, however, because it restricts the layout of thefiles that
can be generated or loaded, while in scientific database ap-
plications, one wants genericity so that communication with
severd diverseprogramsispossible. Anaternativeisfor the
OODBM Sto providehooksso that different trand ationmod-
ulesmay bebuilt, asapplication code. Such coding, however,
could be rather laborious since

o it has to be repeated for each external software program
expecting or producing files of different layouts;

¢ ithastodea with database objectsof nontrivial structural
complexity, eg., sets or indexed-sets, and to produce the
correct layout of the complex objects parts, eg., using
the correct delimiter between set elements or the correct
Set terminator.

e it hasto deal with format conversions between database
values and their corresponding entries in files, eg., be-
tween floating point and decimal values.

A third dternativeis for the OODBMS to provide a higher-
level mechanism, e.g., a declarative language, for describ-
ing how specific trandations from database objects to files
must be done, eg., asin relationa report writers. Then, the
OODBMS either generates trand ation code based on the de-
scription or interprets the description at run-time to perf orm
the necessary trandations.

In this paper, we follow the third dternative in its inter-
preted version. Our task is dightly more complex than that
of report writers though. Whereas they are primarily used

to design the layout of files (reports), we need to trandate
database objectsinto given file layouts, required by the exter-
nal programs. We introduce Frog, a visua tool that we have
developed and is used off-line to map (i.e., specify tranda-
tionsfrom) database objectsto flat files. (For simplicity, our
entire presentation focuses on trangd ations from database ob-
jectstofilesonly, but thereverse directionis handled foll ow-
ing essentialy identica principles.) It generates afile of its
own, amap-file, which containsall the necessary information
for object trandations. At run-time, thisfileis consulted by
another tool, Turtle, which interpretsits contentsto translate
any chosen database object into the appropriate file layout.
We present thevisual mechanismsincorporatedinto Frogand
the underlying techni questhat make these mechanisms work.
These are sufficiently general to allow trandations of objects
of arbitrarily complex structure, e.g., sets of sets, aswell as
trand ationsof objectsin different branches of isahierarchies
(with different structures). We describe the contents of the
map-file that is generated by Frog and also how Turtle uses
them for specific trandations. Thiswhol e effort hasbeen car-
ried out within the context of the ZOO Desktop Experiment
Management Environment that we have been developing [8].
Hence, wea so discuss some preliminary experiencesthat we
have had with the tools as they have been used by some ex-
perimental scientistsin their database-to-files trand ations.

2 TheZOO Experiment Management
Environment

Experimental studiesin essentialy every scientific discipline
go through a similar life-cycle of severa phases: design,
experimentation, and data analysis. In most cases, the cur-
rent state of the art forces scientists to use different toolsin
each phase of that cycle, making the whole process diffi-
cult to manage. We are involved in the development of the
Z00 desktop Experiment Management Environment that as-
pires to bring state-of-the-art management tools to the desk
of experimental scientists[8]. ZOO isan integrated software
package that will enable such scientists to manage their ex-
periments and associated data from their desk viaa uniform
interface. Thiswork isdonein collaborationwith researchers
throughout the University of Wisconsin - Madison campus,
especialy the Departments of Soil Sciences, Biochemistry,
and Physics.

Z00 hasthe abilty to communicate with several externa
experimentation environments, e.g., laboratory equipment,
simulation programs, statistical analysistools, etc. Each en-
vironment operates on an appropriate input file and produces
an output file. An input file is constructed by a ZOO mod-
ule called Turtle, which receives the oid(s) of the object(s)
that capture the environment’sinput as well as the name of
a map-file that has been generated off-line by another mod-
ulecaled Frog. Turtleinterpretsthe map-file, usesthegiven
object oid(s) to extract the needed data from the appropriate

database under ZOO, and eventually constructsthefile. Ina
similar fashion, when the external processingisover, theout-
put file produced is trandated into database objects.

Turtle and Frog are the focus of this paper, so they are
described extensively in subsequent sections. Understanding
their operation requires some familiarity with Moose and
Fox [12], the data model and query language of the database
server of ZOO, which are briefly described below. There are
three kinds of object classes in Moose: primitive, tuple, and
collection. The primitive classes are integer, real, boolean,
and character-string. Objects in tuple classes consist of a
prespecified number of other objects, called parts, identified
by labeled rel ationships. Objectsin collection classes consist
of an arbitrary number of other objects, al from a single
elements class. Collection classes are further subdivided
into set, multiset (bag), sequenced-set (list or array), and
indexed-set classes. An indexed-set is a generdization of
a sequenced-set. Whereas the members of a sequenced-set
areindexed by the set of consecutiveintegers {1, ..., n}, for
some n, the elements of an indexed-set are indexed by (the
elements of) an arbitrary collection object. This collection
object is called the keyset for the indexed-set.

Therearefivekinds of binary object rel ationshipsin Moose.
An arbitrary number of has-part rel ationships, each pointing
to a single object, defines the structure of tuple classes. A
single set-of relationship defines the structure of collection
classes, except for indexed-set classes whose structureis de-
fined by asingle set-of and a number of indexed-by relation-
shipsequal to thedimensionality of theindexed-set. Associa-
tion relationshipsdo not define any structure but simply con-
nect individual objectsintwo arbitrary classes. Findly, anis-
a relationship between two classes identifies one of them as
a specialization of the other and implies that every object in
the subclassbelongsinthe superclassaswell. A path expres-
sionin Fox may traverse any of these kinds of relationships.
It startsat asource class, and itsresult isthe set of objectsthat
are (transitively) related to the objectsin the source classvia
the relationshipsin the path expression.

Using graphs to represent Moose schemeas is very intu-
itive. Each classisanode: ova for primitives (abbreviated
asi for integers, r for reals, b for booleans, and c character
strings) and rectangle for al others. Each relationshipis an
arc in the graph, with different brush patternsindicating dif-
ferent kinds. Each relationship has alabel in each direction,
which if unspecified, is equal to the name of the target class
of therelationshipin that direction.

3 AnExample

Figure 1 shows a simple Moose schema that is used as
an example throughout the rest of the paper. It represents
a (smplified) soil-science study to determine the total yield
and quality of a crop depending on the Weather and on how
varioustypes of plantsare distributedin alarge field divided

has—part
setof
association

is—a

indexed-by

rainfall @
temperature@

date

Output

yield / '\ quality

i name
AT N
- zone_name
wind_direction // \\ humidity -
Windy ‘ Dry }—»@ @
\ /7
/
\N 7

Figure 1: Sample Moose schema of Soil Sciences experiment

into Zones. Each experiment ismodeled as acomplex object,
with sub-objects representing its Input and its Output. Its
outputisapair of thetotal yield and quality of theharvest. Its
input consists of the Weather and a Plant_community, which
isan indexed-set of plantsindexed by the set of field Zones
so that the zone where each plant is grown isrecorded. The
weather iscaptured by rainfall, temperature, and wind-speed
values, and may be Windy (wind-speed > 30 mph), inwhich
case wind-direction becomesimportant aswell, Dry (rainfall
< 2in), in which case air humidity becomes important as
well, or Disaster, which combines the two.

We assume that the output part of an experiment isthere-
sult of running an external program onitsinput part. Figure 2
showsan exampleinput filefor that program, which contains
the necessary information plus other items as well (the back-
ground patterns under some items will be explained shortly).

Rows
1 WEATHER |- constant area
2 (78 | rainfall temperature wind_speed
3 |<— constant area
4 l<— Zone name, width, height
5
6 Z3 corn, 5, 45
7 Z4 wheat, 4, 38
8 |<— obsolete area
| s

Sample Input File

Figure 2: An exampleinput file

4 General Operation of FROG

Before describing the basi ¢ operation of Frog, wefirst clarify
some basic notions and introduce some terminology. Given
a complex database object, one can write in a file only its
parts, elements, or associated objects that belong to primi-
tive classes, i.e, leaf classes in the schema graph. For ex-
ample, one cannot write the oid of a plant object because it
is meaningless outside the database system. Thus, when we
usetheterms‘ mapping acomplex class (for Frog) or ‘trans-
lating/printinga complex object’ (for Turtle), we refer to the
primitive, a phanumeric, objects related to it.

Also, in principle, there may be multiple independent
classes in the schema whose objects correspond to the file
to be generated. Nevertheless, for smplicity of presentation,
we assume that there is only one such class. It is called the
source class, and any object in it that Turtle must trandate
is called a source object. Generalizing to mapping multiple
classesto asinglefileis straightforward.

Based on the above, we turn to a description of how
Frog operates. The users of Frog are designers who are
familiar with both the M oose database schema and thelayout
of the input file to the externa program. A sample input
file for the externa program is brought on the main window
of Frog. The sample file could exist from earlier uses of
the external program or could have been constructed just
so that it can be used in the mapping process. The Moose
schemafor the experiment concerned isal so brought ingraph
form on another window managed by the Opossum schema
manager [5]. The entire mapping task proceeds by repeating
the following step sequence.

1. The designer chooses an area inthe sample file (by high-
lighting it with the mouse). This signifies that mapping

specifications for that part of the file will be given. The
area remains highlighted for the rest of the session with
Frog and even across sessions. At this point, only areas
that cover dl theway to the end of afile line before mov-
ing on to the next line are supported.

2. The designer chooses a class in the schema shown by
Opossum (by a mouse click). The path expression from
the source class to the chosen class is sent to Frog. This
signifiesthat the areaidentified onthe sampleinput filein
step 1is mapped from the contents of the specified class.

3. Depending on the kind of class chosen in step 2, Frog
presents another window with various entries constitut-
ing aprinting specification, i.e., how an object of theclass
should be printed. Usually, only a subset of the entriesis
enough, but the system presents all those that could pos-
sibly be used. Based on the precise contents of the area
chosen in step 1, some of the entries are aready filled up
by best guesses of Frog. The designer may accept those
or modify them appropriately.

For example, assume that thefilein Figure 2 isused asthe
sampleinput filefor themapping process. Tomap therainfall
attribute in the schema of Figure 1 to the area of the sample
input file containing 40, the designer would first highlight 40
and then click onthe oval pointedto by thearc labeled ‘rain-
fal’, which represents the class of integers, where rainfall
values belong. Opossum generates the path expression Ex-
periment.lnput.Weather.rainfall and transmitsit to Frog. The
printing specification window then appears with entries re-
lated tointegers, e.g., maximum length (number of digits) oc-
cupied by any integer (Section 5.1). Thisentry will contain
thevalue 2 as a guess, which isthe length of 40. If the exter-
nal program does not need rainfall values printed so that they
occupy a prespecified maximum length, or if the database
may contain rainfall valuesthat are longer, then the user will
change the estimated value appropriately (in the first case, it
will make the entry empty).

The step sequence outlined above deals with the areas of
the sample input file that are indeed mapped to from data in
the database, called variable areas. There could be aress,
however, that should appear in noinput file generated by Tur-
tle. These may befound in legacy samplefilesthat no longer
correspond exactly to the input required by the external pro-
gram. Such areas are called obsolete. They are identified as
in step 1 above with Frog being in a special mode that inter-
prets step 1 differently: the area is highlighted in different
color from that of variable areas, and thereisno continuati on
into steps 2 and 3. In Figure 2, theareasinrows 8 and 9 are
obsolete, as indicated by the darker background.

In addition to the above, there could aso be areas in the
sample input file that should have the same valueinall input
files generated by Turtle and do not correspond to any class
inthe schema. These are called constant areas. Any area not

highlighted through step 1 is considered constant. In Figure
2,theareasinrows1and 3 are constant, asthey havenot been
highlighted at all.

5 Basc Trandation Specification by FROG

For clarity of presentation, we first deal with mapping a re-
stricted form of M oose schemas to files, and then removethe
restriction in Section 6. In particular, we consider mapping
(sub-)schemas that contain only tuple and primitive classes,
and only has-part and association relationships. That is,
when applied on a single source object, any path expression
to a class that must be mapped results in a single object as
well. Inthiscasg, all (printable) information about the source
objectisinitsleaves. Hence, for the purposesof mappingto a
file, the entire schema of interest can (although does not have
to) be seen as equivaent to a simple 1-level-deep schema
withall leaves hanging directly under the (tupl€) source cl ass.

5.1 Visual Language

In the restricted case above, the main concern is mapping
the leaves of interest to the file in the appropriate order. The
source class maps to the entire sample file, and itsleaves in
the schema to the individual elementsin the samplefile.

To express the above, designers interact with Frog as
follows. Bringing the sample input file on the screen is
equivalent to choosing the entirefile areain step 1 of the step
sequence of Section 4. The classindicated in step 2 becomes
the source class of all path expressions to be generated by
Opossum later on. Given the restrictions of this section, this
must be atuple class, so in step 3, the printing specification
window for tuples pops up, containing the following entries:

o Ddimiter between the parts of the tuple object
o Terminator for the tuple object

o Maximum number of elements per line

o Maximum number of characters per line

o Default valueto be printed if database entry is null

Consider the example of Figures1 and 2. If we only con-
centrate on row 2 of the sample file and the Wesather part
of the Input class in the schema, then we are dealing with
an instance of the restricted case discussed in this section.
By specifying the delimiter entry of the printing specifica-
tion window to be <space> and the terminator entry to be
<r et ur n> (the ‘newline’ character), and leaving the sub-
sequent two entries unspecified, a designer provides enough
information for Turtle to know how to print an entire tuple
object inafile (al parts printed in the same line).

After this, designers enter the step sequence of Section 4
as many times as there are variable areas in the sample file.
Independent of which primitive class the corresponding | eaf
in the schema s, the printing specification window that pops
up always contains the following entries:

o Length (in number of characters)

o Default valueto be printed if database entry is null

If the corresponding leaf in the schema is the class of reals,
then the printing specification window a so contains the fol -
lowing additiona entries:

o Precision (in number of decimal digits)
o Notation (scientific or decimal)

Consider again row 2 of the samplefilein Figure2. Thefol-
lowing table presents collectively printing specifications that
designers may give as they map each of the three primitive
parts of the Weather class:

| Entry [rainfal | temperature | wind-speed |
length 3 4 2
default -1 -999 -1

As mentioned above, for each entry, Frog initialy offers a
guess for a value based on what the designer highlighted on
the sample input file. (For lack of space, the details of this
guessing as implemented in Frog are not presented here.)

52 Map-File

Theresult of asession with Frog isamap-file. For each vari-
able and constant area identified through Frog, the map-file
contains a block with al the necessary information to pop-
ulate the area in an input file. There are different types of
blocksfor the different types of areas and/or kinds of mapped
classes. Some blocks are printable, capturing areas of indi-
vidua values that may be printed. Other blocks are struc-
tural, capturing larger areas that contain smaller (printableor
structural) areas and enclosing the blocks corresponding to
these contained areas. Each block beginswith a“begin{X}”
statement and ends with an “end{X}" statement, where X
signals the type of the block, e.g., tuple, set, integer, string,
congtant. Between the two enclosing statements of blocks
corresponding to constant aress, one finds asingle line with
the constant to be printed. For blocks of variable areas, one
finds in separate lines the path expression corresponding to
the block (step 2), al the entries constituting a printing spec-
ification for the type of the block (all thosein the window of
step 3), and possibly other blocksin the required order. For
therestricted case of this section, the outermost block has X
always equal to “tuple’, and encloses inner blocks with X
equal to “constant”, “integer”, “red”, or “string”, which en-
close no further blocks.

Continuing on with the previous example, the map-file
generated through Frog for afile that consists of only row 2
of Figure 2 isgiven below:

\ begi n{tupl e}

pat hexp = i nput
deliniter = <space>
term nator = <return>
maxel ms =

maxchars =

default = NULL
\ begi n{i nt eger}

pat hexp = I nput.Wather.rainfall
length = 3
default = -1

\end{i nt eger}
\ begi n{i nt eger}

pat hexp = I nput.Wather.tenperature
length = 4
default = -999

\'end{i nt eger}
\ begi n{i nt eger}
pat hexp = I nput. Wat her.w nd- speed
length = 2
default = -1
\'end{i nt eger}
\'end{t upl e}

In the above, we assume that if the input oid that Turtle
receives at run-time is null, then the string ‘NULL" will be
printed. Likewise, if any of the Wesather partsisnull, thenthe
values-1, -999, and -1 are printed in place of rainfall amount,
temperature, and wind-speed, respectively. Note how thein-
formation given as printing specification is repeated in the
map file. Also notethat, even if the designer specified map-
pingsin an arbitrary order, intheend, Frog rearranges blocks
to reflect the order of the corresponding areas in the sample
input file. In reading the map-file, Turtlewill generate an in-
put filein the order it finds printabl e blocks, which should be
identical to the spatia order of the corresponding areasin the
sample input file, eqg., first rainfall, then temperature, then
wind-speed.

6 General Trandation Specification by
FROG

In thissection, we removetherestriction of Section 5. In par-
ticular, we describe how to deal with mapping set or indexed-
set classes, and a so how to deal withis-are ationships, which
are features found in many applications. Even in the most
genera case, al (printable) information about the source
classremainsinitsleaves, but now theintermediate structure
isimportant for the overall layout of thefile, capturing larger
aress of it, and cannot beflattened out asintherestricted case
of Section 5. This intermediate structure generates isomor-
phic hierarchies in the highlighted areas of the sample input
fileas well as in the corresponding map-file blocks.

Tuple classes are treated exactly as described in the pre-
vious section for the source class, except that step 1 corre-
spondsto explicitly identifying afile area corresponding to a
tupleobject. Hence, we do not el aborate onthem any further.

We discuss each of the remaining three advanced features
inaseparate subsection below. Inall cases, the designer must
follow the step sequence described earlier, with differences
only in the printing specification window and the resulting
map-file block. In general, the areas highlighted in step 1

may form a containment hierarchy in the sample input file.
Each such areais highlighted in different color from itsim-
mediately enclosing area and isinterpreted withinthe latter’s
context. Likewise, path expressions returned for an area at
step 2 by Opossum are checked for having the correct prefix
based on the path expression returned for theimmediately en-
closing area.

6.1 Ses
6.1.1

The printing specification window that pops up in step 3 of
the sequence containsthe following entriesrelated to sets:

Visual Language

Delimiter between the el ements of the set object
Number of elements in the set object

Terminator for the set object

Maximum number of elements per line

Maximum number of characters per line

Default value to be printed if set in databaseisnull

Notethat theonly difference fromtheentriesfor tupleobjects
is an additional entry for the number of elements in the set
object, something that is not needed for the parts of atuple
object as their number is prespecified in the schema

After this, designers enter the step sequence again once to
identify one element of the set. Depending on thetype of the
element (primitive, tuple, set, etc.), the sequencewill proceed
accordingly, based on our descriptions in the corresponding
subsection. Note that this does not have to be repeated for
every set element inthe sampleinput file, as sets are uniform
objects, and describing how to print one of them is enough.

Theexample of Figures1 and 2 containsno set classes that
are to be mapped on their own to the samplefile. The only
set class, Zones, isthe keyset for Plant-community and must
be mapped as part of the indexed-set. The whole process for
sets, however, isextremely similar to that for indexed-sets, so
the examplethat we givein Section 6.2 illustratethesituation
for setsaswell.

6.1.2

The block inserted in a map-file for a set begins with a“be-
gin{set}” statement and ends with an “end{set}” statement.
Between these two statements, onefindsin separate linesthe
path expression corresponding to the block, al the entries
congtituting a printing specification for sets, and a block for
the elements.

Map-File

6.2 Indexed-Sets

Thefollowing discussion deal swith one-dimensional indexed-
sets, i.e., indexed by a single collection. The generalization
to multi-dimensional indexed-setsis straightforward, as one
may view them recursively as one-dimensional indexed-sets
of indexed-sets with one fewer dimension.

6.21 Visual Language
Adgain, the printing specification window that popsup in step
3 contains exactly the same entries as that of sets, except
that now one deal s with key-element pairs of the indexed-set
instead of simply elements. (A key-element pair consists of
amember of the keyset (key) and the corresponding member
of the indexed-set (element).)

In Figure 1, Plant-community is an indexed-set class, in-
dexed by the Zones set class. To specify theappropriate map-
ping, designerswould first highlight the large light-gray area
of the file, as shown in Figure 2, then click on the Plant-
community node on the schema, and finally possibly update
the entriesin the printing specification window. In this case,
except for the ever-present default value, al that isneeded is
toput <r et ur n>inthedeimiter entry, signifyingthat each
key-element pair occupies asingleline.

After this, designers enter the step sequence again once to
identify one key-element pair of the indexed-set. Due to the
special nature of indexed-sets, a deviation from the normis
necessary here: step 2 is skipped as there is no schema class
corresponding to key-element pairs. Sincetheareaidentified
instep 1 iswithintheindexed-set area, however, Frog hasthe
necessary information to skip step 2, and simply proceed to
step 3 by presenting a printing specification window. Thisis
identical tothewindow for atuple, asthekey and the element
inthe pair are essentialy two individual entities.

After that, designers will have to enter the step sequence
twice more, once for the key and once for the element. Each
case will proceed normally, based on the types of thekey and
the element, respectively.

Continuing on with the example of Figures 1 and 2, the
key-element pair is identified in the file by highlighting the
first such pair, the line starting with Z1. In Figure 2, thisis
shown with angled striped background. Frog will then go
directly to step 3 to allow the designer to specify how the
pair will be printed. After that, the designer will enter the
step sequence once by highlighting the key Z1 (light-gray
areq) and clicking on the character string class of members
of Zones, and once by highlighting the corresponding ele-
ment ‘ corn,5,45' (whitearea) and clicking on the plant class,
which isthe members of Plant-community class. Finaly, the
designer will enter the step sequence again, oncefor each part
of the plant tuple class (small light-gray areas under corn, 5,
and 45). The printing specifications appropriate for thisfile
are captured in the generated map-file below, so they are not
repeated here. Note that one needs to map to a single key-
element pair of theindexed-set, asindexed-sets are homoge-
neous collections and each pair will be printed in the same
way. Also note that the precise shade of the background that
each area recelves is not important, aslong as it is different
from theimmediately enclosed and the immediately enclos-
ing areas. Only obsoleteareas have astandard shadingto dis-
tinguish them from al variable areas, which in our example
isdark gray.

If the indexed-set is of the sequenced-set kind (i.e., in-
dexed by the set of integers), then Frog treatsit asaregular set
sincefor printing purposesthereis no difference between the
two. Thus, when an areais highlighted within an indexed-set
areainstep 1, Frog does not enter the special process of skip-
ping step 2 so that a key-element pair is identified. Instead,
it enters step 2 as usud, waiting for the element class of the
sequenced-set to be identified through Opossum.

6.22 Map-File

The block inserted in a map-file for an indexed-set begins
with a “begin{indexedset}” statement and ends with an
“end{indexedset}” statement. Between thesetwo statements
one finds information identical to that of a set block. For a
genera indexed-set, the enclosed block for the elementsis a
tuple block, which in turns encloses two further blocks, one
for the keys and one for the elements. For a sequenced-set,
the enclosed block is of the type corresponding to the ele-
ments of the sequenced-set.

Continuing on with the previous example, the map-file

block generated through Frog for the Plant-community indexed-

set based on the sample file of Figure 2 is given below:

\ begi n{i ndexedset }
pat hexp = I nput. Pl ant-community
delimter = <return>
noel ms =
termnator =
maxel ns =
maxchars =
default =
\ begi n{tupl e}
pat hexp =
deliniter = <space>
term nator =
maxel ns =
maxchars =
default =
\ begi n{string}
pat hexp = I nput. Zones. zone- nanes
length = 2
default = NULL
\end{string}
\ begi n{t upl e}
pat hexp = I nput. Pl ant-comunity. Pl ant
delimter =,
termnator =
maxel ns =
maxchars =
default = NULL
\ begi n{string}

pat hexp = Input. Pl ant-com Pl ant. nane
length =
default = unknown

\end{string}
\ begi n{i nt eger}
pat hexp = Input.Plant-com Pl ant.wi dth

length =
default = -1
\'end{i nt eger}

\ begi n{i nt eger}

pat hexp = I nput. Pl ant-com Pl ant. hei ght
length =
default = -1

\'end{i nt eger}
\'end{t upl e}
\'end{t upl e}
\ end{i ndexedset}

6.3 |IsA Hierarchies

Consider an abject class that istheroot of an is-a hierarchy.
When an object in that classistrandated into fileformat, the
resulting file layout is different depending on the particul ar
subclass where the object belongs. How all the possiblelay-
outs are captured in a single map-file is the topic of this sub-
section. Thekey problemishow to avoid remapping areasin
the file that are common to objects of all subclasses. During
the mapping process, designers may need to use several sam-
pleinput files, asmany asthereare different filelayoutsinthe
worst case. In the following discussion, we assume that the
same object can bein two classes only if oneis a subclass of
the other, or if they are both superclasses of a third classin
which the object belongs as well (multipleinheritance).

6.3.1 Visual Language

Designers choose to start working on one of the sample input
files. The step sequencefor theroot class of theis-ahierarchy
proceeds on that file as described above based on the kinds
of the classes mapped. Let the root area be the file area
corresponding to the root class object in the file. When
an area enclosed in the root area is highlighted in step 1
and then associated with a subclass of the root class in step
2, the comparison of the two path expressions reveals the
rel ationship to Frog, which generates the appropriate special
block in the map-file.! This may be repeated recursively for
an entire is-a path from the root class down to increasingly
specialized subclasses.

To capture a different file layout, corresponding to a dif-
ferent path in the is-a hierarchy, designers bring up another
samplefile. That second file could beafull-fledged inputfile,
or simply afile that contains just the areas that are different
from the origina file, or anything in between. Step 1 of the
first sequence with thisfile identifiesthe area that has differ-
ent layout from thefirst file and needs mapping, while step 2
identifies the subclass that corresponds to thisarea. Beyond
this point, the process continues as before.

The above process is most efficient when all the elements
of a superclass are mapped in association to the superclass,
and that mapping is shared with al the subclasses. However,
the ability to do that depends primarily on what is common

L Full path expressionsin Fox includeexplicitly traversals of is-arelation-
shipsaswell, with @ being the connective indicating such a relationship.

among the variousfile layouts. If the common el ements are
placed close together and in the same layout for objectsinthe
different subclasses, then they can be mapped only once. If
they areinterleaved with el ementsthat differ from subclassto
subclass, or they arelaid out differently for objects of differ-
ent subclasses, then the common part may become minimal
or even nonexistent.

Finally, for multipleinheritance, mapping for thecommon
subclass must repeat the mapping for the elements of all but
one of itsimmediate superclasses.

Asan example, we present acasethat isrelatively smple,
which can be dealt withwithout using many of thefeatures of
the general algorithm described above and in fact requires a
singlesampleinput file. Consider again the schemain Figure
1, where the Weather class is the root of an is-a hierarchy
that includes multiple inheritance. The original Figure 2
has a general Westher object, since it includes none of the
specialized attributes. Figure 3 hasaDisaster Weather obj ect,
sinceit includes dl five of the possible Wesather attributes.

Designers could use the general agorithm to map each
subclass separately to an appropriateinput file. However, in
this case, al mappings may be specified by ssimply using the
file in Figure 3, which contains a Disaster Weather object.
Because the subschemathat deal swith Weather containsonly
a tuple class with has-part relationships, as in Section 5,
mapping may proceed directly with the leaf classes. After
mappingrainfall, temperature, and wind-speed, asbefore, the
designer may enter the step sequence by highlightingthe area
that contains NW and then clicking on the character-string
class connected to the Windy class. The path expression
returned indicatesthat thisisfor asubclass of Westher, which
provides enough information for Turtleto do the appropriate
trandation in each case. The designer may proceed similarly
to do the mapping for humidity, by highlighting the area that
contains 52 in the sample input file.

6.3.2 Map-File

The block inserted in a map-file for any subclass begins
with a “begin{isa}” statement and ends with an “end{isa}”
statement. It is always within the block of a superclass of it
(most probably itsimmediate superclass), which may also be
an “isa’ block. The blocks of sibling subclasses (i.e., with
a common immediate superclass) are enclosed in the same
superclass block but not in each other.

Continuing on with the previousexample, if we only con-
centrate on row 2 of thefile in Figure 3, the map-file block
generated through Frog for the entire Weather is-a hierar-
chy is the one shown in Section 5.2, but with the follow-
ing additional blocks placed immediately before the final
“end{tuple}”.

\ begi n{string}

pat hexp = I nput.Wat her @V ndy. wi nd-di rection
length = 2

default =

\end{string}

\ begi n{i nt eger}

pathexp = I nput.Wather@ry. hunidity
length = 3

default =

\'end{i nt eger}

Note that by having the default value for wind-direction
and humidity be empty, if Turtle deals with a Windy object,
the path expression leading to humidity will return a null
object and therefore nothing will be printed, as it should.
Similarly for the wind-direction attributeif Turtle deals with
a Dry object. The layouts of the input files have permitted
the designer here to work with a single sampleinput file and
generate no isa blocks.

7 General Operation of TURTLE

When the external program needs to be executed with a
specific input expressed as a Moose object, an input filewith
the appropriate layout has to be generated and filled with the
right values from the database object. Turtle accomplishes
this based on the map-file that has been generated for that
purpose and the oid of the input object.

Asmentioned earlier, theblocksin the map file are placed
in the order their corresponding areas appear in the file, ex-
cept for sibling is-a blocks, which appear in an arbitrary or-
der between them within the same superclass block. For ev-
ery block, Turtle sends to the database server aquery that es-
sentially processes the bl ock’ spath expression, retrievingthe
object(s) that correspond to thefile area related to the block,
if any. If the path expression leads to a primitive class, the
retrieved value(s) should actually be placed in the input file
inthat area. This placement isdoneby Turtleinterpretingthe
contentsof the printing specification windowsof theareaand
all itsenclosing areas, and deriving the appropriate printing
format for the value(s).

When is-a blocks are nested one inside another, they are
processed as al other blocks, the outer before the inner.
When they are siblings, they are processed in the order they
appear. In the absence of multiple inheritance, at most one
of the sibling blocks may have its path expression return a
nonempty answer, since objects cannot appear in multiple
classes without acommon subclass. In the presence of multi-
pleinheritance, multiplesibling blocks may return nonempty
answers, inwhich case Turtlemust ook further insidefor the
block corresponding to the common subclass to determine
which of the sharing superclass blocks should be followed.

8 Status, Experience, and Other Uses

Preliminary versions of Frog and Turtle have been imple-
mented in C++ inthe context of theZOO system. They do not
deal with indexed-sets or is-a hierarchies but support al the
remaining features described above. The missing items are
currently under implementation. These early versions have

Rows
1 WEATHER

Sample Input File

L rainfall temperature wind_speed wind_direction

2

3 PLANT COMMUNITY

4 @ — Zone
5 Z2 rye, 7,30

6 Z3 corn, 5, 45

7 Z4 wheat, 4, 38

8

9

- constant area

humidity

= constant area

name, width, height

— obsolete area

Figure3: An example input file for Disaster Weather

been used by scientistsin the Soil Sciences Department and
the Biochemistry Department of the Univ. of Wisconsin, to
automate generation of input filesto their experiments. Their
input files are very large (containing hundreds of parameters
and many constants), and the use of toolslike Frog and Turtle
has significantly simplified the task of generating these files.

I'n additionto communicating with external programs, Frog
and Turtle can also be used as reporting tools. For instance,
users may liketo print copies of detailson each plant speci-
men they studied. A samplefilewiththedesired layoutisfirst
created, Frog isthen used to map the corresponding database
classesto thefile elements, and finally Turtlegenerate there-
quired copies.

Frog and Turtle can also be used for data migration be-
tween heterogeneous DBM Ss. Data from the source system
can befirst transferred in afile based on the layout expected
by thetarget system, which can thenread and trand atethefile
into itsinternal representation.

9 Redated Work

Most commerciad DBMSs provide utilities (such as report
writers) to transfer database data into files in user-specified
layouts. There are also numerous tools that enable informa-
tion exchange between different systems viafiles. Although
often similar in functionality to Frog and Turtle, these tools
usualy work in restricted domains and do not emphasize vi-
sual interaction like Frog and Turtle.

We first mention such tools that have been developed
in the context of scientific databases, as this has been our
primary motivation as well. The Computational Chemistry
Database project [3] providesinter-operability between com-
putational chemistry applications by encapsul ating the appli-
cations and data in an object-oriented database. The system
is based on the framework developed by Cushing et a. [2]
for interfacing experiments with a database and has been

demonstrated to serve the needs of computational chemists.
The system trandates data between databases and files that
have well defined layouts. The layout of the files is spec-
ified using CCIL and CCOL (Computational Chemistry In-
put/Output Language). These are declarative report-writing
languagesthat are tail ored towardstherequirementsof chem-
istry applications.

Chipperfield et d. address the issues of storing genome
data into a relationa database, migrating data from other
sourcesintothat database, and retrieving datafrom that data-
base [1]. The database can be interfaced with applications
that process the datain well-defined formats for the genome.

Both the above tools were developed to provide inter-
operability between specific applications, so they work pri-
marily withinthe specific domainsfor which they were built.
Our system, on the other hand, is general-purpose and hence
well-suited to a broader set of applications. In addition, it of-
fersavisua user interface that significantly affects usability.

Similar efforts exist outside the scientific database realm
as well. In some approaches, the contents of an Ascii file
are described by means of a grammar. The OBST persis-
tent object management system [11] (devel oped as part of the
STONE [9] environment) supports atool called the Univer-
sa Structurer and Flattener (STF). If the structure of a file
can be described by a context-free grammar, STF can gener-
ate aparser (structurer) and unparser (flattener) for the file.
The structurer parses the contents of the file according to the
grammar and creates an object structureand theflattener does
the inverse operation. The grammar file resembles the map-
file generated by Frog. The disadvantage of this approach
isthat the scientist has to understand the language in which
grammars are specified and then design the grammar desired.
Also, the grammar is required to be context-free, which im-
poses restrictions on the files that can be trand ated.

The Ontos OODBM S has mechanisms to provide a uni-

fied view of dataresiding in different databases. In particu-
lar, Ontos alows product descriptions to be transferred be-
tween manufacturing systems and Ontos databases. Follow-
ing the STEP standard, the structure (schema) of product
datais specified using the EXPRESS language [4, 10], which
is trandated into an Ontos schema. Any product data file
is an instance of a given EXPRESS schema. Users anno-
tate such a file with path expressions on the corresponding
schema, which can then be trandated into an Ontos object.
Although adequate and/or desirable in manufacturing appli-
cations, having the users annotate every single data file with
the appropriate schema information would have been a seri-
ous problem in the ZOO environment. That's why we fol-
lowed the Frog/Turtle approach.

Findly, SAS [6] and SPSS [7] are established statistical
toolsthat alow file structuresto be described by FORTRAN-
like commands for statistical analyses, report writing, and
datafile building. They are more powerful than Frog/Turtle
because they can handle arbitrary processing of dataasit is
translated. On the other hand, aswith all thetools mentioned
inthissection, they are not as easy touse asFrog/Turtle, since
they do not offer avisua style of interaction.

10 Conclusions

We have presented Frog and Turtle, two tools that can be
used to facilitate the trandation of objects in an OODBMS
into file format, so that files can be generated and sent as
input to external programs. Frog is used off-line to map
classes in OO schemas to areas of sample input files and
specify how database values are to be laid out and printed
in a file. The result is a map-file with all the appropriate
information. Turtle is used a run-time to trandate given
database objects based on the map-file generated by Frog.
Although we did not describe this a al in this paper, the
same mechanisms are used for mapping (sub)-schemas to
files that are to be read in by the OODBMS and trand ated
into database objects. The only differenceisthat, inthiscase,
we ded with reading specifications (not printing), which
occasionally contain more entries, e.g., for set objects.
There are several issues that are part of our current and
futurework. First, the implementation of the second version
of the system continues. Second, as described in this paper,
all blocks in the map file contain path expressions rooted
at the source class being mapped. This is quite inefficient,
since these path expressions share long prefixes, which are
processed again and again. We are currently investigating
various ways to speed up the entire process. Third, we
plantoinvestigateif printing specifications could potentially
contain inconsi stencies, in which case, agorithms should be
developed for checking map-files for such inconsistencies.

References

[1] M. Chipperfield et a. Growth of data in the genome
data base since ccm92 and methods for access. In Proc.
Human Genome Mapping, pages 3-5, 1993.

[2] J. Cushing et a. Object-oriented database support for
computational chemistry. In H. Hinterberger and J.C.
French, editors, Proc. 6th International Working Con-
ference on Statistical and Scientific Database Manage-
ment, Zurich, Switzerland, September 1992.

[3] J. Cushing, D. Maier, M. Rao, D. Abdl, D. Feller, and
D. DeVaney. Computationa proxies. Modeling sci-
entific applications in object databases. In Proc. 7th
International Conference on Statistical and Scientific
Database Management, Charlottesville, VA, Septem-
ber 1994.

[4] 1SO Group. 1SO 10303: Guidelinesfor the devel op-
ment and approval
of STEP application protocols, version 1.0. Technical
Report SO TC184/SC4/WGANSA(P5), 1SO, February
1992.

[5] E. Haber, Y.loannidis, and M. Livny. Opossum: Desk-
top schema management through customizable visual -
ization. In Proc. 21st International VLDB Conference,
pages 527-538, Zurich, Switzerland, September 1995.

[6] SAS Institute Inc. SAS Language Reference - \Version
6. 1990.

[7] SPSSInc. SPSSUser’'sguide, 3rd edition. 1988.

[8] Y.loannidis, M. Livny, and S. Gupta. The ZOO desktop
experiment management environment, February 1996.
Submitted for publication.

[9] C.LewerentzandE. Casais. STONE: A short overview.
Technical Report FZ1.040.1, Forschungszentrum Infor-
matik (FZI), Karlsruhe, Germany, May 1992.

[10] D. Schenck. Exchange of product model data- part 11:
The Express language. Technica Report TC184/SC4
Document NC64, 1SO, July 1990.

[11] J. Uhl et al. The object management system of STONE
- OBST release 3.2. Technica Report FZ1.027.1,
Forschungszentrum Informatik (FZI), Karlsruhe, Ger-
many, October 1991.

[12] J. Wiener and Y. loannidis. A Moose and a Fox can
aid scientistswith data management problems. In Proc.
4th International Workshop on Database Programming
Languages, pages 376-398, New York, NY, August
1993.

