
FROG and TURTLE: Visual Bridges Between Files and Object-Oriented Data� y
Vaishnavi Anjur Yannis E. Ioannidisz Miron Livny

Department of Computer Sciences, University of Wisconsin, Madison, WI 53706fvaish,yannis,mirong@cs.wisc.edu

Abstract
The problem of translating database objects into a flat for-
mat to be written out in a flat Ascii file or, conversely, trans-
lating the contents of a file into a complex database object
arises in several applications. It is especially important in sci-
entific database applications, where file-based communica-
tion with external programs (e.g., visualization packages or
model simulations) is very common. We introduce Frog, a
visual tool that can be used to specify translations between
database objects and flat files, requiring no programming by
the user. The tool can deal with objects of arbitrary com-
plexity, without the object complexitybeing directly reflected
in the complexity of the corresponding visual interaction.
Based on the visual actions of the user, the tool stores enough
information in a map-file, whose contents are used at run-
time by another tool, Turtle, to translate any chosen database
object into the appropriate file layout. The tool has been de-
veloped as part of the ZOO desktop Experiment Management
Environment and has been used by a few experimental scien-
tists with success.

1 Introduction
Many applicationsexist that require an Object-Oriented Data-
base System (OODBMS) to be communicating with other,
external, software, sending data to it or receiving data from
it. For example, database data may be sent out for some
complex computations to be performed on it (possibly by
legacy software) with the results coming back to be stored
in the database as well. Very often this communication is
achieved through Ascii files (or Ascii byte streams) because
of the heterogeneity of the overall system. For example,
the external software may have been built independently of
the OODBMS and may support a file-based I/O interface;
or it may simply support an interface that is different from
that of the OODBMS and files are a convenient intermedi-
ate representation for the data to be communicated. Hence,
the OODBMS must have the ability to translate any complex
database object intoa flat structure to be written out into a file,
or to read in a file and translate its flat contents into a complex
object. This ability is also necessary in order for legacy data� Work supported in part by the National Science Foundation under
Grant IRI-9224741.y We would like to acknowledge Tom Wang for his significant effort in
implementing Frog and Turtle.z Additionally supported in part by the National Science Foundation
under Grant IRI-9157368 (PYI Award) and by grants from DEC, IBM, HP,
AT&T, Oracle, and Informix.

to be loaded into a database so that future access to the data
can be done through the OODBMS.

The above functionality is especially critical for scientific
databases, since they are associated with applications that
have all the above characteristics. For example, data stored in
scientific databases often needs to be sent out to specialized
visualization programs to be visualized, or to statistical soft-
ware for analysis, or to modeling packages for simulation,
with the results (of the last two types of software) stored back
into the database. Experiment management, which is our em-
phasis and main motivation, also generates similar scenarios.
An experiment management system needs to communicate
with the experimentation environment (be it a model simula-
tion program, an automated assembly of instruments, or even
a human that “manually” operates on instruments) to send re-
quests for experiments with specific input and to later receive
the experiment output for storage.

Translation between database data and files is often hard-
coded into existing systems, e.g., bulk loading facilities in
most commercial OO and relational DBMSs. This is undesir-
able, however, because it restricts the layout of the files that
can be generated or loaded, while in scientific database ap-
plications, one wants genericity so that communication with
several diverse programs is possible. An alternative is for the
OODBMS to provide hooks so that different translationmod-
ules may be built, as application code. Such coding, however,
could be rather laborious since� it has to be repeated for each external software program

expecting or producing files of different layouts;� it has to deal with database objects of nontrivial structural
complexity, e.g., sets or indexed-sets, and to produce the
correct layout of the complex objects’ parts, e.g., using
the correct delimiter between set elements or the correct
set terminator.� it has to deal with format conversions between database
values and their corresponding entries in files, e.g., be-
tween floating point and decimal values.

A third alternative is for the OODBMS to provide a higher-
level mechanism, e.g., a declarative language, for describ-
ing how specific translations from database objects to files
must be done, e.g., as in relational report writers. Then, the
OODBMS either generates translation code based on the de-
scription or interprets the description at run-time to perform
the necessary translations.

In this paper, we follow the third alternative in its inter-
preted version. Our task is slightly more complex than that
of report writers though. Whereas they are primarily used

to design the layout of files (reports), we need to translate
database objects into given file layouts, required by the exter-
nal programs. We introduce Frog, a visual tool that we have
developed and is used off-line to map (i.e., specify transla-
tions from) database objects to flat files. (For simplicity, our
entire presentation focuses on translations from database ob-
jects to files only, but the reverse direction is handled follow-
ing essentially identical principles.) It generates a file of its
own, a map-file, which contains all the necessary information
for object translations. At run-time, this file is consulted by
another tool, Turtle, which interprets its contents to translate
any chosen database object into the appropriate file layout.
We present the visual mechanisms incorporated into Frog and
the underlying techniques that make these mechanisms work.
These are sufficiently general to allow translations of objects
of arbitrarily complex structure, e.g., sets of sets, as well as
translations of objects in different branches of isa hierarchies
(with different structures). We describe the contents of the
map-file that is generated by Frog and also how Turtle uses
them for specific translations. This whole effort has been car-
ried out within the context of the ZOO Desktop Experiment
Management Environment that we have been developing [8].
Hence, we also discuss some preliminary experiences that we
have had with the tools as they have been used by some ex-
perimental scientists in their database-to-files translations.

2 The ZOO Experiment Management
Environment

Experimental studies in essentially every scientific discipline
go through a similar life-cycle of several phases: design,
experimentation, and data analysis. In most cases, the cur-
rent state of the art forces scientists to use different tools in
each phase of that cycle, making the whole process diffi-
cult to manage. We are involved in the development of the
ZOO desktop Experiment Management Environment that as-
pires to bring state-of-the-art management tools to the desk
of experimental scientists [8]. ZOO is an integrated software
package that will enable such scientists to manage their ex-
periments and associated data from their desk via a uniform
interface. This work is done in collaborationwith researchers
throughout the University of Wisconsin - Madison campus,
especially the Departments of Soil Sciences, Biochemistry,
and Physics.

ZOO has the abilty to communicate with several external
experimentation environments, e.g., laboratory equipment,
simulation programs, statistical analysis tools, etc. Each en-
vironment operates on an appropriate input file and produces
an output file. An input file is constructed by a ZOO mod-
ule called Turtle, which receives the oid(s) of the object(s)
that capture the environment’s input as well as the name of
a map-file that has been generated off-line by another mod-
ule called Frog. Turtle interprets the map-file, uses the given
object oid(s) to extract the needed data from the appropriate

database under ZOO, and eventually constructs the file. In a
similar fashion, when the external processing is over, the out-
put file produced is translated into database objects.

Turtle and Frog are the focus of this paper, so they are
described extensively in subsequent sections. Understanding
their operation requires some familiarity with Moose and
Fox [12], the data model and query language of the database
server of ZOO, which are briefly described below. There are
three kinds of object classes in Moose: primitive, tuple, and
collection. The primitive classes are integer, real, boolean,
and character-string. Objects in tuple classes consist of a
prespecified number of other objects, called parts, identified
by labeled relationships. Objects in collection classes consist
of an arbitrary number of other objects, all from a single
elements class. Collection classes are further subdivided
into set, multiset (bag), sequenced-set (list or array), and
indexed-set classes. An indexed-set is a generalization of
a sequenced-set. Whereas the members of a sequenced-set
are indexed by the set of consecutive integers f1; : : : ; ng, for
some n, the elements of an indexed-set are indexed by (the
elements of) an arbitrary collection object. This collection
object is called the keyset for the indexed-set.

There are five kinds of binary object relationships in Moose.
An arbitrary number of has-part relationships, each pointing
to a single object, defines the structure of tuple classes. A
single set-of relationship defines the structure of collection
classes, except for indexed-set classes whose structure is de-
fined by a single set-of and a number of indexed-by relation-
ships equal to the dimensionalityof the indexed-set. Associa-
tion relationships do not define any structure but simply con-
nect individual objects in two arbitrary classes. Finally, an is-
a relationship between two classes identifies one of them as
a specialization of the other and implies that every object in
the subclass belongs in the superclass as well. A path expres-
sion in Fox may traverse any of these kinds of relationships.
It starts at a source class, and its result is the set of objects that
are (transitively) related to the objects in the source class via
the relationships in the path expression.

Using graphs to represent Moose schemas is very intu-
itive. Each class is a node: oval for primitives (abbreviated
as i for integers, r for reals, b for booleans, and c character
strings) and rectangle for all others. Each relationship is an
arc in the graph, with different brush patterns indicating dif-
ferent kinds. Each relationship has a label in each direction,
which if unspecified, is equal to the name of the target class
of the relationship in that direction.

3 An Example

Figure 1 shows a simple Moose schema that is used as
an example throughout the rest of the paper. It represents
a (simplified) soil-science study to determine the total yield
and quality of a crop depending on the Weather and on how
various types of plants are distributed in a large field divided

Experiment

Weather

Plant_community

Plant

i

i

c

wind_speed

has−part

setof

association

indexed−by

name

is−a

(D)

i i

yield quality

Zones

i
i

height

width

rainfall i

i

humidity

temperature

c
wind_direction

date c

i

c
name

Input Output

Windy Dry

Disaster

zone_name

Figure 1: Sample Moose schema of Soil Sciences experiment

into Zones. Each experiment is modeled as a complex object,
with sub-objects representing its Input and its Output. Its
output is a pair of the total yield and quality of the harvest. Its
input consists of the Weather and a Plant community, which
is an indexed-set of plants indexed by the set of field Zones
so that the zone where each plant is grown is recorded. The
weather is captured by rainfall, temperature, and wind-speed
values, and may be Windy (wind-speed > 30 mph), in which
case wind-direction becomes important as well, Dry (rainfall< 2 in), in which case air humidity becomes important as
well, or Disaster, which combines the two.

We assume that the output part of an experiment is the re-
sult of running an external program on its input part. Figure 2
shows an example input file for that program, which contains
the necessary information plus other items as well (the back-
ground patterns under some items will be explained shortly).

Z1 corn , 5 , 45

WEATHER

40 75 5
PLANT COMMUNITY

SOIL

phosphorus 13

Z4 wheat, 4, 38

Z3 corn, 5, 45

Z2 rye, 7, 30

rainfall temperature wind_speed

Zone name, width, height

obsolete area

constant area

constant area

Rows

1

2

3

4

5

6

7

8

9

Sample Input File

Figure 2: An example input file

4 General Operation of FROG

Before describing the basic operation of Frog, we first clarify
some basic notions and introduce some terminology. Given
a complex database object, one can write in a file only its
parts, elements, or associated objects that belong to primi-
tive classes, i.e., leaf classes in the schema graph. For ex-
ample, one cannot write the oid of a plant object because it
is meaningless outside the database system. Thus, when we
use the terms ‘mapping a complex class’ (for Frog) or ‘trans-
lating/printing a complex object’ (for Turtle), we refer to the
primitive, alphanumeric, objects related to it.

Also, in principle, there may be multiple independent
classes in the schema whose objects correspond to the file
to be generated. Nevertheless, for simplicity of presentation,
we assume that there is only one such class. It is called the
source class, and any object in it that Turtle must translate
is called a source object. Generalizing to mapping multiple
classes to a single file is straightforward.

Based on the above, we turn to a description of how
Frog operates. The users of Frog are designers who are
familiar with both the Moose database schema and the layout
of the input file to the external program. A sample input
file for the external program is brought on the main window
of Frog. The sample file could exist from earlier uses of
the external program or could have been constructed just
so that it can be used in the mapping process. The Moose
schema for the experiment concerned is also brought in graph
form on another window managed by the Opossum schema
manager [5]. The entire mapping task proceeds by repeating
the following step sequence.

1. The designer chooses an area in the sample file (by high-
lighting it with the mouse). This signifies that mapping

specifications for that part of the file will be given. The
area remains highlighted for the rest of the session with
Frog and even across sessions. At this point, only areas
that cover all the way to the end of a file line before mov-
ing on to the next line are supported.

2. The designer chooses a class in the schema shown by
Opossum (by a mouse click). The path expression from
the source class to the chosen class is sent to Frog. This
signifies that the area identified on the sample input file in
step 1 is mapped from the contents of the specified class.

3. Depending on the kind of class chosen in step 2, Frog
presents another window with various entries constitut-
ing a printingspecification, i.e., how an object of the class
should be printed. Usually, only a subset of the entries is
enough, but the system presents all those that could pos-
sibly be used. Based on the precise contents of the area
chosen in step 1, some of the entries are already filled up
by best guesses of Frog. The designer may accept those
or modify them appropriately.

For example, assume that the file in Figure 2 is used as the
sample input file for the mapping process. To map the rainfall
attribute in the schema of Figure 1 to the area of the sample
input file containing 40, the designer would first highlight 40
and then click on the oval pointed to by the arc labeled ‘rain-
fall’, which represents the class of integers, where rainfall
values belong. Opossum generates the path expression Ex-
periment.Input.Weather.rainfall and transmits it to Frog. The
printing specification window then appears with entries re-
lated to integers, e.g., maximum length (number of digits)oc-
cupied by any integer (Section 5.1). This entry will contain
the value 2 as a guess, which is the length of 40. If the exter-
nal program does not need rainfall values printed so that they
occupy a prespecified maximum length, or if the database
may contain rainfall values that are longer, then the user will
change the estimated value appropriately (in the first case, it
will make the entry empty).

The step sequence outlined above deals with the areas of
the sample input file that are indeed mapped to from data in
the database, called variable areas. There could be areas,
however, that should appear in no input file generated by Tur-
tle. These may be found in legacy sample files that no longer
correspond exactly to the input required by the external pro-
gram. Such areas are called obsolete. They are identified as
in step 1 above with Frog being in a special mode that inter-
prets step 1 differently: the area is highlighted in different
color from that of variable areas, and there is no continuation
into steps 2 and 3. In Figure 2, the areas in rows 8 and 9 are
obsolete, as indicated by the darker background.

In addition to the above, there could also be areas in the
sample input file that should have the same value in all input
files generated by Turtle and do not correspond to any class
in the schema. These are called constant areas. Any area not

highlighted through step 1 is considered constant. In Figure
2, the areas in rows 1 and 3 are constant, as they have not been
highlighted at all.

5 Basic Translation Specification by FROG
For clarity of presentation, we first deal with mapping a re-
stricted form of Moose schemas to files, and then remove the
restriction in Section 6. In particular, we consider mapping
(sub-)schemas that contain only tuple and primitive classes,
and only has-part and association relationships. That is,
when applied on a single source object, any path expression
to a class that must be mapped results in a single object as
well. In this case, all (printable) information about the source
object is in its leaves. Hence, for the purposes of mapping to a
file, the entire schema of interest can (although does not have
to) be seen as equivalent to a simple 1-level-deep schema
with all leaves hanging directly under the (tuple) source class.

5.1 Visual Language

In the restricted case above, the main concern is mapping
the leaves of interest to the file in the appropriate order. The
source class maps to the entire sample file, and its leaves in
the schema to the individual elements in the sample file.

To express the above, designers interact with Frog as
follows. Bringing the sample input file on the screen is
equivalent to choosing the entire file area in step 1 of the step
sequence of Section 4. The class indicated in step 2 becomes
the source class of all path expressions to be generated by
Opossum later on. Given the restrictions of this section, this
must be a tuple class, so in step 3, the printing specification
window for tuples pops up, containing the following entries:� Delimiter between the parts of the tuple object� Terminator for the tuple object� Maximum number of elements per line� Maximum number of characters per line� Default value to be printed if database entry is null

Consider the example of Figures 1 and 2. If we only con-
centrate on row 2 of the sample file and the Weather part
of the Input class in the schema, then we are dealing with
an instance of the restricted case discussed in this section.
By specifying the delimiter entry of the printing specifica-
tion window to be <space> and the terminator entry to be
<return> (the ‘newline’ character), and leaving the sub-
sequent two entries unspecified, a designer provides enough
information for Turtle to know how to print an entire tuple
object in a file (all parts printed in the same line).

After this, designers enter the step sequence of Section 4
as many times as there are variable areas in the sample file.
Independent of which primitive class the corresponding leaf
in the schema is, the printing specification window that pops
up always contains the following entries:� Length (in number of characters)

� Default value to be printed if database entry is null

If the corresponding leaf in the schema is the class of reals,
then the printing specification window also contains the fol-
lowing additional entries:� Precision (in number of decimal digits)� Notation (scientific or decimal)

Consider again row 2 of the sample file in Figure 2. The fol-
lowing table presents collectively printing specifications that
designers may give as they map each of the three primitive
parts of the Weather class:

Entry rainfall temperature wind-speed

length 3 4 2
default -1 -999 -1

As mentioned above, for each entry, Frog initially offers a
guess for a value based on what the designer highlighted on
the sample input file. (For lack of space, the details of this
guessing as implemented in Frog are not presented here.)

5.2 Map-File
The result of a session with Frog is a map-file. For each vari-
able and constant area identified through Frog, the map-file
contains a block with all the necessary information to pop-
ulate the area in an input file. There are different types of
blocks for the different types of areas and/or kinds of mapped
classes. Some blocks are printable, capturing areas of indi-
vidual values that may be printed. Other blocks are struc-
tural, capturing larger areas that contain smaller (printable or
structural) areas and enclosing the blocks corresponding to
these contained areas. Each block begins with a “beginfXg”
statement and ends with an “endfXg” statement, where X
signals the type of the block, e.g., tuple, set, integer, string,
constant. Between the two enclosing statements of blocks
corresponding to constant areas, one finds a single line with
the constant to be printed. For blocks of variable areas, one
finds in separate lines the path expression corresponding to
the block (step 2), all the entries constituting a printing spec-
ification for the type of the block (all those in the window of
step 3), and possibly other blocks in the required order. For
the restricted case of this section, the outermost block has X
always equal to “tuple”, and encloses inner blocks with X
equal to “constant”, “integer”, “real”, or “string”, which en-
close no further blocks.

Continuing on with the previous example, the map-file
generated through Frog for a file that consists of only row 2
of Figure 2 is given below:

\begin{tuple}
pathexp = input
delimiter = <space>
terminator = <return>
maxelms =
maxchars =

default = NULL
\begin{integer}
pathexp = Input.Weather.rainfall
length = 3
default = -1
\end{integer}
\begin{integer}
pathexp = Input.Weather.temperature
length = 4
default = -999
\end{integer}
\begin{integer}
pathexp = Input.Weather.wind-speed
length = 2
default = -1
\end{integer}

\end{tuple}

In the above, we assume that if the input oid that Turtle
receives at run-time is null, then the string ‘NULL’ will be
printed. Likewise, if any of the Weather parts is null, then the
values -1, -999, and -1 are printed in place of rainfall amount,
temperature, and wind-speed, respectively. Note how the in-
formation given as printing specification is repeated in the
map file. Also note that, even if the designer specified map-
pings in an arbitrary order, in the end, Frog rearranges blocks
to reflect the order of the corresponding areas in the sample
input file. In reading the map-file, Turtle will generate an in-
put file in the order it finds printable blocks, which should be
identical to the spatial order of the corresponding areas in the
sample input file, e.g., first rainfall, then temperature, then
wind-speed.

6 General Translation Specification by
FROG

In this section, we remove the restriction of Section 5. In par-
ticular, we describe how to deal with mapping set or indexed-
set classes, and also how to deal with is-a relationships, which
are features found in many applications. Even in the most
general case, all (printable) information about the source
class remains in its leaves, but now the intermediate structure
is important for the overall layout of the file, capturing larger
areas of it, and cannot be flattened out as in the restricted case
of Section 5. This intermediate structure generates isomor-
phic hierarchies in the highlighted areas of the sample input
file as well as in the corresponding map-file blocks.

Tuple classes are treated exactly as described in the pre-
vious section for the source class, except that step 1 corre-
sponds to explicitly identifying a file area corresponding to a
tuple object. Hence, we do not elaborate on them any further.

We discuss each of the remaining three advanced features
in a separate subsection below. In all cases, the designer must
follow the step sequence described earlier, with differences
only in the printing specification window and the resulting
map-file block. In general, the areas highlighted in step 1

may form a containment hierarchy in the sample input file.
Each such area is highlighted in different color from its im-
mediately enclosing area and is interpreted within the latter’s
context. Likewise, path expressions returned for an area at
step 2 by Opossum are checked for having the correct prefix
based on the path expression returned for the immediately en-
closing area.

6.1 Sets

6.1.1 Visual Language

The printing specification window that pops up in step 3 of
the sequence contains the following entries related to sets:� Delimiter between the elements of the set object� Number of elements in the set object� Terminator for the set object� Maximum number of elements per line� Maximum number of characters per line� Default value to be printed if set in database is null

Note that the only difference from the entries for tuple objects
is an additional entry for the number of elements in the set
object, something that is not needed for the parts of a tuple
object as their number is prespecified in the schema.

After this, designers enter the step sequence again once to
identify one element of the set. Depending on the type of the
element (primitive, tuple, set, etc.), the sequence will proceed
accordingly, based on our descriptions in the corresponding
subsection. Note that this does not have to be repeated for
every set element in the sample input file, as sets are uniform
objects, and describing how to print one of them is enough.

The example of Figures 1 and 2 contains no set classes that
are to be mapped on their own to the sample file. The only
set class, Zones, is the keyset for Plant-community and must
be mapped as part of the indexed-set. The whole process for
sets, however, is extremely similar to that for indexed-sets, so
the example that we give in Section 6.2 illustrate the situation
for sets as well.

6.1.2 Map-File

The block inserted in a map-file for a set begins with a “be-
ginfsetg” statement and ends with an “endfsetg” statement.
Between these two statements, one finds in separate lines the
path expression corresponding to the block, all the entries
constituting a printing specification for sets, and a block for
the elements.

6.2 Indexed-Sets

The followingdiscussion deals with one-dimensional indexed-
sets, i.e., indexed by a single collection. The generalization
to multi-dimensional indexed-sets is straightforward, as one
may view them recursively as one-dimensional indexed-sets
of indexed-sets with one fewer dimension.

6.2.1 Visual Language

Again, the printing specification window that pops up in step
3 contains exactly the same entries as that of sets, except
that now one deals with key-element pairs of the indexed-set
instead of simply elements. (A key-element pair consists of
a member of the keyset (key) and the corresponding member
of the indexed-set (element).)

In Figure 1, Plant-community is an indexed-set class, in-
dexed by the Zones set class. To specify the appropriate map-
ping, designers would first highlight the large light-gray area
of the file, as shown in Figure 2, then click on the Plant-
community node on the schema, and finally possibly update
the entries in the printing specification window. In this case,
except for the ever-present default value, all that is needed is
to put <return> in the delimiter entry, signifying that each
key-element pair occupies a single line.

After this, designers enter the step sequence again once to
identify one key-element pair of the indexed-set. Due to the
special nature of indexed-sets, a deviation from the norm is
necessary here: step 2 is skipped as there is no schema class
corresponding to key-element pairs. Since the area identified
in step 1 is within the indexed-set area, however, Frog has the
necessary information to skip step 2, and simply proceed to
step 3 by presenting a printing specification window. This is
identical to the window for a tuple, as the key and the element
in the pair are essentially two individual entities.

After that, designers will have to enter the step sequence
twice more, once for the key and once for the element. Each
case will proceed normally, based on the types of the key and
the element, respectively.

Continuing on with the example of Figures 1 and 2, the
key-element pair is identified in the file by highlighting the
first such pair, the line starting with Z1. In Figure 2, this is
shown with angled striped background. Frog will then go
directly to step 3 to allow the designer to specify how the
pair will be printed. After that, the designer will enter the
step sequence once by highlighting the key Z1 (light-gray
area) and clicking on the character string class of members
of Zones, and once by highlighting the corresponding ele-
ment ‘corn,5,45’ (white area) and clicking on the plant class,
which is the members of Plant-community class. Finally, the
designer will enter the step sequence again, once for each part
of the plant tuple class (small light-gray areas under corn, 5,
and 45). The printing specifications appropriate for this file
are captured in the generated map-file below, so they are not
repeated here. Note that one needs to map to a single key-
element pair of the indexed-set, as indexed-sets are homoge-
neous collections and each pair will be printed in the same
way. Also note that the precise shade of the background that
each area receives is not important, as long as it is different
from the immediately enclosed and the immediately enclos-
ing areas. Only obsolete areas have a standard shading to dis-
tinguish them from all variable areas, which in our example
is dark gray.

If the indexed-set is of the sequenced-set kind (i.e., in-
dexed by the set of integers), then Frog treats it as a regular set
since for printing purposes there is no difference between the
two. Thus, when an area is highlightedwithin an indexed-set
area in step 1, Frog does not enter the special process of skip-
ping step 2 so that a key-element pair is identified. Instead,
it enters step 2 as usual, waiting for the element class of the
sequenced-set to be identified through Opossum.

6.2.2 Map-File

The block inserted in a map-file for an indexed-set begins
with a “beginfindexedsetg” statement and ends with an
“endfindexedsetg” statement. Between these two statements
one finds information identical to that of a set block. For a
general indexed-set, the enclosed block for the elements is a
tuple block, which in turns encloses two further blocks, one
for the keys and one for the elements. For a sequenced-set,
the enclosed block is of the type corresponding to the ele-
ments of the sequenced-set.

Continuing on with the previous example, the map-file
block generated through Frog for the Plant-community indexed-
set based on the sample file of Figure 2 is given below:

\begin{indexedset}
pathexp = Input.Plant-community
delimiter = <return>
noelms =
terminator =
maxelms =
maxchars =
default =

\begin{tuple}
pathexp =
delimiter = <space>
terminator =
maxelms =
maxchars =
default =
\begin{string}
pathexp = Input.Zones.zone-names
length = 2
default = NULL
\end{string}
\begin{tuple}
pathexp = Input.Plant-community.Plant
delimiter = ,
terminator =
maxelms =
maxchars =
default = NULL
\begin{string}
pathexp = Input.Plant-com.Plant.name
length =
default = unknown
\end{string}
\begin{integer}
pathexp = Input.Plant-com.Plant.width

length =
default = -1
\end{integer}
\begin{integer}
pathexp = Input.Plant-com.Plant.height
length =
default = -1
\end{integer}

\end{tuple}
\end{tuple}

\end{indexedset}

6.3 Is-A Hierarchies
Consider an object class that is the root of an is-a hierarchy.
When an object in that class is translated into file format, the
resulting file layout is different depending on the particular
subclass where the object belongs. How all the possible lay-
outs are captured in a single map-file is the topic of this sub-
section. The key problem is how to avoid remapping areas in
the file that are common to objects of all subclasses. During
the mapping process, designers may need to use several sam-
ple input files, as many as there are different file layouts in the
worst case. In the following discussion, we assume that the
same object can be in two classes only if one is a subclass of
the other, or if they are both superclasses of a third class in
which the object belongs as well (multiple inheritance).

6.3.1 Visual Language
Designers choose to start working on one of the sample input
files. The step sequence for the root class of the is-a hierarchy
proceeds on that file as described above based on the kinds
of the classes mapped. Let the root area be the file area
corresponding to the root class object in the file. When
an area enclosed in the root area is highlighted in step 1
and then associated with a subclass of the root class in step
2, the comparison of the two path expressions reveals the
relationship to Frog, which generates the appropriate special
block in the map-file.1 This may be repeated recursively for
an entire is-a path from the root class down to increasingly
specialized subclasses.

To capture a different file layout, corresponding to a dif-
ferent path in the is-a hierarchy, designers bring up another
sample file. That second file could be a full-fledged input file,
or simply a file that contains just the areas that are different
from the original file, or anything in between. Step 1 of the
first sequence with this file identifies the area that has differ-
ent layout from the first file and needs mapping, while step 2
identifies the subclass that corresponds to this area. Beyond
this point, the process continues as before.

The above process is most efficient when all the elements
of a superclass are mapped in association to the superclass,
and that mapping is shared with all the subclasses. However,
the ability to do that depends primarily on what is common1Full path expressions in Fox include explicitly traversals of is-a relation-
ships as well, with @ being the connective indicating such a relationship.

among the various file layouts. If the common elements are
placed close together and in the same layout for objects in the
different subclasses, then they can be mapped only once. If
they are interleaved with elements that differ from subclass to
subclass, or they are laid out differently for objects of differ-
ent subclasses, then the common part may become minimal
or even nonexistent.

Finally, for multiple inheritance, mapping for the common
subclass must repeat the mapping for the elements of all but
one of its immediate superclasses.

As an example, we present a case that is relatively simple,
which can be dealt with without using many of the features of
the general algorithm described above and in fact requires a
single sample input file. Consider again the schema in Figure
1, where the Weather class is the root of an is-a hierarchy
that includes multiple inheritance. The original Figure 2
has a general Weather object, since it includes none of the
specialized attributes. Figure 3 has a Disaster Weather object,
since it includes all five of the possible Weather attributes.

Designers could use the general algorithm to map each
subclass separately to an appropriate input file. However, in
this case, all mappings may be specified by simply using the
file in Figure 3, which contains a Disaster Weather object.
Because the subschema that deals with Weather contains only
a tuple class with has-part relationships, as in Section 5,
mapping may proceed directly with the leaf classes. After
mapping rainfall, temperature, and wind-speed, as before, the
designer may enter the step sequence by highlightingthe area
that contains NW and then clicking on the character-string
class connected to the Windy class. The path expression
returned indicates that this is for a subclass of Weather, which
provides enough information for Turtle to do the appropriate
translation in each case. The designer may proceed similarly
to do the mapping for humidity, by highlighting the area that
contains 52 in the sample input file.

6.3.2 Map-File
The block inserted in a map-file for any subclass begins
with a “beginfisag” statement and ends with an “endfisag”
statement. It is always within the block of a superclass of it
(most probably its immediate superclass), which may also be
an “isa” block. The blocks of sibling subclasses (i.e., with
a common immediate superclass) are enclosed in the same
superclass block but not in each other.

Continuing on with the previous example, if we only con-
centrate on row 2 of the file in Figure 3, the map-file block
generated through Frog for the entire Weather is-a hierar-
chy is the one shown in Section 5.2, but with the follow-
ing additional blocks placed immediately before the final
“endftupleg”.

\begin{string}
pathexp = Input.Weather@Windy.wind-direction
length = 2
default =

\end{string}
\begin{integer}
pathexp = Input.Weather@Dry.humidity
length = 3
default =
\end{integer}

Note that by having the default value for wind-direction
and humidity be empty, if Turtle deals with a Windy object,
the path expression leading to humidity will return a null
object and therefore nothing will be printed, as it should.
Similarly for the wind-direction attribute if Turtle deals with
a Dry object. The layouts of the input files have permitted
the designer here to work with a single sample input file and
generate no isa blocks.

7 General Operation of TURTLE
When the external program needs to be executed with a
specific input expressed as a Moose object, an input file with
the appropriate layout has to be generated and filled with the
right values from the database object. Turtle accomplishes
this based on the map-file that has been generated for that
purpose and the oid of the input object.

As mentioned earlier, the blocks in the map file are placed
in the order their corresponding areas appear in the file, ex-
cept for sibling is-a blocks, which appear in an arbitrary or-
der between them within the same superclass block. For ev-
ery block, Turtle sends to the database server a query that es-
sentially processes the block’s path expression, retrieving the
object(s) that correspond to the file area related to the block,
if any. If the path expression leads to a primitive class, the
retrieved value(s) should actually be placed in the input file
in that area. This placement is done by Turtle interpreting the
contents of the printingspecification windows of the area and
all its enclosing areas, and deriving the appropriate printing
format for the value(s).

When is-a blocks are nested one inside another, they are
processed as all other blocks, the outer before the inner.
When they are siblings, they are processed in the order they
appear. In the absence of multiple inheritance, at most one
of the sibling blocks may have its path expression return a
nonempty answer, since objects cannot appear in multiple
classes without a common subclass. In the presence of multi-
ple inheritance, multiple sibling blocks may return nonempty
answers, in which case Turtle must look further inside for the
block corresponding to the common subclass to determine
which of the sharing superclass blocks should be followed.

8 Status, Experience, and Other Uses
Preliminary versions of Frog and Turtle have been imple-
mented in C++ in the context of the ZOO system. They do not
deal with indexed-sets or is-a hierarchies but support all the
remaining features described above. The missing items are
currently under implementation. These early versions have

Z1 corn , 5 , 45

WEATHER

40 75 5
PLANT COMMUNITY

SOIL

phosphorus 13

Z4 wheat, 4, 38

Z3 corn, 5, 45

Z2 rye, 7, 30

rainfall temperature wind_speed

Zone name, width, height

obsolete area

constant area

constant area

Rows

1

2

3

4

5

6

7

8

9

Sample Input File

NW 52 wind_direction humidity

Figure 3: An example input file for Disaster Weather

been used by scientists in the Soil Sciences Department and
the Biochemistry Department of the Univ. of Wisconsin, to
automate generation of input files to their experiments. Their
input files are very large (containing hundreds of parameters
and many constants), and the use of tools like Frog and Turtle
has significantly simplified the task of generating these files.

In addition to communicating with external programs, Frog
and Turtle can also be used as reporting tools. For instance,
users may like to print copies of details on each plant speci-
men they studied. A sample file with the desired layout is first
created, Frog is then used to map the corresponding database
classes to the file elements, and finally Turtle generate the re-
quired copies.

Frog and Turtle can also be used for data migration be-
tween heterogeneous DBMSs. Data from the source system
can be first transferred in a file based on the layout expected
by the target system, which can then read and translate the file
into its internal representation.

9 Related Work
Most commercial DBMSs provide utilities (such as report
writers) to transfer database data into files in user-specified
layouts. There are also numerous tools that enable informa-
tion exchange between different systems via files. Although
often similar in functionality to Frog and Turtle, these tools
usually work in restricted domains and do not emphasize vi-
sual interaction like Frog and Turtle.

We first mention such tools that have been developed
in the context of scientific databases, as this has been our
primary motivation as well. The Computational Chemistry
Database project [3] provides inter-operabilitybetween com-
putational chemistry applications by encapsulating the appli-
cations and data in an object-oriented database. The system
is based on the framework developed by Cushing et al. [2]
for interfacing experiments with a database and has been

demonstrated to serve the needs of computational chemists.
The system translates data between databases and files that
have well defined layouts. The layout of the files is spec-
ified using CCIL and CCOL (Computational Chemistry In-
put/Output Language). These are declarative report-writing
languages that are tailored towards the requirements of chem-
istry applications.

Chipperfield et al. address the issues of storing genome
data into a relational database, migrating data from other
sources into that database, and retrieving data from that data-
base [1]. The database can be interfaced with applications
that process the data in well-defined formats for the genome.

Both the above tools were developed to provide inter-
operability between specific applications, so they work pri-
marily within the specific domains for which they were built.
Our system, on the other hand, is general-purpose and hence
well-suited to a broader set of applications. In addition, it of-
fers a visual user interface that significantly affects usability.

Similar efforts exist outside the scientific database realm
as well. In some approaches, the contents of an Ascii file
are described by means of a grammar. The OBST persis-
tent object management system [11] (developed as part of the
STONE [9] environment) supports a tool called the Univer-
sal Structurer and Flattener (STF). If the structure of a file
can be described by a context-free grammar, STF can gener-
ate a parser (structurer) and unparser (flattener) for the file.
The structurer parses the contents of the file according to the
grammar and creates an object structure and the flattener does
the inverse operation. The grammar file resembles the map-
file generated by Frog. The disadvantage of this approach
is that the scientist has to understand the language in which
grammars are specified and then design the grammar desired.
Also, the grammar is required to be context-free, which im-
poses restrictions on the files that can be translated.

The Ontos OODBMS has mechanisms to provide a uni-

fied view of data residing in different databases. In particu-
lar, Ontos allows product descriptions to be transferred be-
tween manufacturing systems and Ontos databases. Follow-
ing the STEP standard, the structure (schema) of product
data is specified using the EXPRESS language [4, 10], which
is translated into an Ontos schema. Any product data file
is an instance of a given EXPRESS schema. Users anno-
tate such a file with path expressions on the corresponding
schema, which can then be translated into an Ontos object.
Although adequate and/or desirable in manufacturing appli-
cations, having the users annotate every single data file with
the appropriate schema information would have been a seri-
ous problem in the ZOO environment. That’s why we fol-
lowed the Frog/Turtle approach.

Finally, SAS [6] and SPSS [7] are established statistical
tools that allow file structures to be described by FORTRAN-
like commands for statistical analyses, report writing, and
data-file building. They are more powerful than Frog/Turtle
because they can handle arbitrary processing of data as it is
translated. On the other hand, as with all the tools mentioned
in this section, they are not as easy to use as Frog/Turtle, since
they do not offer a visual style of interaction.

10 Conclusions
We have presented Frog and Turtle, two tools that can be
used to facilitate the translation of objects in an OODBMS
into file format, so that files can be generated and sent as
input to external programs. Frog is used off-line to map
classes in OO schemas to areas of sample input files and
specify how database values are to be laid out and printed
in a file. The result is a map-file with all the appropriate
information. Turtle is used at run-time to translate given
database objects based on the map-file generated by Frog.
Although we did not describe this at all in this paper, the
same mechanisms are used for mapping (sub)-schemas to
files that are to be read in by the OODBMS and translated
into database objects. The only difference is that, in this case,
we deal with reading specifications (not printing), which
occasionally contain more entries, e.g., for set objects.

There are several issues that are part of our current and
future work. First, the implementation of the second version
of the system continues. Second, as described in this paper,
all blocks in the map file contain path expressions rooted
at the source class being mapped. This is quite inefficient,
since these path expressions share long prefixes, which are
processed again and again. We are currently investigating
various ways to speed up the entire process. Third, we
plan to investigate if printing specifications could potentially
contain inconsistencies, in which case, algorithms should be
developed for checking map-files for such inconsistencies.

References
[1] M. Chipperfield et al. Growth of data in the genome

data base since ccm92 and methods for access. In Proc.
Human Genome Mapping, pages 3–5, 1993.

[2] J. Cushing et al. Object-oriented database support for
computational chemistry. In H. Hinterberger and J.C.
French, editors, Proc. 6th International Working Con-
ference on Statistical and Scientific Database Manage-
ment, Zurich, Switzerland, September 1992.

[3] J. Cushing, D. Maier, M. Rao, D. Abel, D. Feller, and
D. DeVaney. Computational proxies: Modeling sci-
entific applications in object databases. In Proc. 7th
International Conference on Statistical and Scientific
Database Management, Charlottesville, VA, Septem-
ber 1994.

[4] ISO Group. ISO 10303: Guidelines for the develop-
ment and approval
of STEP application protocols, version 1.0. Technical
Report ISO TC184/SC4/WG4NS4(P5), ISO, February
1992.

[5] E. Haber, Y. Ioannidis, and M. Livny. Opossum: Desk-
top schema management through customizable visual-
ization. In Proc. 21st International VLDB Conference,
pages 527–538, Zurich, Switzerland, September 1995.

[6] SAS Institute Inc. SAS Language Reference - Version
6. 1990.

[7] SPSS Inc. SPSS User’s guide, 3rd edition. 1988.

[8] Y. Ioannidis, M. Livny, and S. Gupta. The ZOO desktop
experiment management environment, February 1996.
Submitted for publication.

[9] C. Lewerentz and E. Casais. STONE: A short overview.
Technical Report FZI.040.1, Forschungszentrum Infor-
matik (FZI), Karlsruhe, Germany, May 1992.

[10] D. Schenck. Exchange of product model data - part 11:
The Express language. Technical Report TC184/SC4
Document NC64, ISO, July 1990.

[11] J. Uhl et al. The object management system of STONE
- OBST release 3.2. Technical Report FZI.027.1,
Forschungszentrum Informatik (FZI), Karlsruhe, Ger-
many, October 1991.

[12] J. Wiener and Y. Ioannidis. A Moose and a Fox can
aid scientists with data management problems. In Proc.
4th International Workshop on Database Programming
Languages, pages 376–398, New York, NY, August
1993.

