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Abstract

In several working environments, production involves re-
peated executions of certain procedures. A workflow de-
scribes the individual tasks performed in these procedures
and their interrelationships. Current Workflow Manage-
ment Systems (WFMSs) use a Database Management Sys-
tem (DBMS) to store task descriptions, and implement all
workflow functionality in modules that run on top of the
DBMS. Motivated by scientific workflows, we propose a
much more DBMS-centric architecture, in which conven-
tional database technology provides much of the desired
scientific WFMS functionality. A key element of our ap-
proach is viewing the workflow as a web of data objects
interconnected with active links that carry process descrip-
tions. The workflow is fully defined as a database schema,
and its execution is the gradual buildup of an instance of
this schema through the active object links. For our work,
we use the modeling and querying tools of Horse, the
object-oriented DBMS that we have developed in the con-
text of the Zoo Desktop Experiment Management Environ-
ment.

1. Introduction

Several procedures in many working environments are
repeated over and over again. At an insurance company, ev-
ery time a claim is filed, a standard procedure is followed�
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for its evaluation; at a car rental agency, there is a sequence
of steps followed when a customer asks for a car; and in lab-
oratories, the same scientific experiment is executed when
fresh input data are available. These procedures usually
consist of a set of smaller tasks that represent self-contained
units of work, which are naturally dependent to each other.
The set of tasks involved in a procedure along with their
interdependencies and their inputs and outputs is called a
workflow. Workflow management systems (WFMSs) are
used to define, execute, and monitor workflows.
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Figure 1. Transactional view of workflows.
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Figure 2. Object view of workflows.

In the typical conceptualization of workflows, the focal
point is the action, i.e., the processes that take place during
workflow execution (Figure 1). Workflows are considered
as transactions, with the information that they manipulate
playing a “subordinate” role – it is a side-effect, so to speak.
This transactional view of workflows leads to (almost im-
poses) the architecture depicted in Figure 3a, which is the
one followed by the majority of existing WFMSs (commer-
cial systems or research prototypes). A dedicated workflow-
specific software system runs on top of a Data Base Man-
agement System (DBMS), i.e., process management is sep-
arate from data management. The DBMS simply stores the



information about the workflow tasks, while the next soft-
ware layer uses that information to conduct the workflow
execution.
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Figure 3. Two WFMS architectures

Motivated primarily by scientific applications, we pro-
pose a different conceptualization of workflows, where the
focal point is the information, i.e., the data used and gener-
ated during workflow execution (Figure 2). Workflows are
considered as graphs of objects, with the processes that cre-
ated them being expressed through the links between them.
This object view of workflows suggests the architecture de-
picted in Figure 3b. Provided that its data model can ex-
press the active workflow aspects, the DBMS orchestrates
the workflow execution as a first-class WFMS.

In this paper, we essentially build a case for the object
view of scientific workflows. We demonstrate that a DBMS
is itself a WFMS, offering much of the needed functional-
ity with respect to process management without additional
software (Figure 3b). Moreover, we show that any crit-
ical functionality missing from conventional DBMSs can
be easily provided with minimal, natural extensions that
remain faithful to the philosophy of database technology.
By providing all needed process management within the
DBMS, we reap many benefits:

� Reduced implementation effort: For much of the
needed workflow functionality, there is no need for
implementing special-purpose ‘workflow tools’.

� Increased optimization opportunity: The entire op-
eration of a workflow is controlled from within the
DBMS proper, so the optimizer has global knowledge
of all database interactions.

� Uniformity in workflow management: From speci-
fication to execution and monitoring, all workflow
functionality is exported to the user through one uni-
fied access language.

� Immediate information availability: ‘Drill down’ re-
quests from the end result to all aspects of the work-
flow that generated it are direct database queries.

As a proof of concept for the object view, we describe
how workflows have been captured in the Horse object-
oriented DBMS, which we have built as part of the Zoo

Desktop Experiment Management Environment [8]
�

. The
key characteristics of our overall approach are the follow-
ing:

� A workflow is defined as an object-oriented database
schema

� An instance of the workflow schema is created during
execution

� Invocation of workflow processes is captured and
triggered by active rules of a restricted form

� External applications implementing workflow pro-
cesses are scheduled through updates to system cata-
logs

� Status and other kinds of information about run-
ning or finished workflow processes is obtained by
database queries

� Information on the workflow data is obtained by
database queries

The rest of the paper is organized as follows. In Section
2, we provide an example workflow to be used through-
out the paper. In Section 3, we discuss the functional-
ity required from a WFMS to support scientific workflows.
In Section 4, we briefly describe the Moose data model
and the Fox data definition and query language on which
Horse is based. In Section 5, we discuss how Horse
achieves the desired functionality and becomes a WFMS.
In Section 6, we present the workflows operated in two
scientific laboratories where we are actually applying our
tools for workflow management, and in Section 7, we dis-
cuss some related work. Finally, in Section 8, we present a
summary of our contributions and our future work plans.

2. A Workflow Example

The example depicted in Figure 4 is an actual scien-
tific workflow that captures the operation of an experimen-
tal study in the Soil Sciences Department of the Univ. of
Wisconsin [1]. The objective of the experiment is to pro-
duce daily forecasts of near-surface temperatures in cran-
berry bogs in Wisconsin. These forecasts give cranberry
farmers advance warning of over-night frost conditions

�

, so
they can take action to protect their vines from frost dam-
age.

1. Around noon each day, satellite and ground-based
meteorological observations are processed in the At-
mospheric Sciences Department of UW, generating a
24-hour weather forecast at several heights in the at-
mosphere for the whole United States;

2. This US forecast is fed into a Bog Forecast Extrac-
tion program that extracts forecasts for points that are
25 meters above specified cranberry bog locations;

�

Although our main interest and emphasis is on scientific workflows,
the results apply equally well to business workflows also.

�

...as is often the case in Wisconsin!
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Figure 4. The cranberry workflow

3. These forecasts are sent to the Soil Science Depart-
ment where they are processed by CranEB, to derive
a forecast for the level of the cranberry vines (canopy
level);

4. Later in the day, as new weather observations be-
come available, the initial 25m bog forecast can be
updated:

� Scaled CranEB output forecasts are compared
with new observed weather conditions in a
package of statistical routines.

� Appropriate corrections to the original 25m bog
forecast are determined, and CranEB is rerun.

With this feedback mechanism, the canopy-level
forecast is updated continuously throughout the day.

5. Text files generated by CranEB are fed into the DE-
Vise Visualization tool [9] that generate GIF plots of
canopy temperature vs. time. These plots are then
published on the Web, where they can be readily ac-
cessed by cranberry farmers throughout Wisconsin.

In the sequel, we refer to this example as the “cranberry
workflow”. It is used throughout the paper for reference.

3. Basic WFMS Functionality

In this section, we attempt a closer look at workflows
and analyze the following basic functionality that a WFMS
must definitely provide:

� workflow specification
� workflow execution
� workflow evolution
� workflow auditing

The above functionality is necessary for all types of ap-
plications, but is also sufficient for some as well, e.g., those

that arise in single-user or mostly-read environments. Sci-
entific laboratories (physical or virtual) tend to belong in
these categories in general; since they are our main moti-
vation for this work, our discussion focuses almost exclu-
sively on the above functionality. Clearly, in multi-user and
very dynamic environments, like those found in the busi-
ness sector, there is additional workflow functionality that
is necessary, including transaction management, workflow
recovery, workflow interaction (for cooperative work), and
others. We believe that the object view of workflows has
many benefits for the support of this additional functional-
ity as well, but demonstrating this remains part of our future
work.

3.1. Workflow Specification

The specification of a workflow consists of three items:
� Process: This includes the workflow tasks and how

they are related. There should be enough flexibility
to allow various forms of task interrelationships:

1. tasks operating in series or in parallel
2. tasks receiving input from or providing (possi-

bly distinct) input to multiple other tasks
3. tasks choosing to receive input from among

many possible tasks that provide it
4. tasks receiving input directly or indirectly from

themselves (feedback)
5. tasks being abstracted and grouped into higher-

level tasks

Even in the simple cranberry workflow, we see the
need for most of the above. For example, task Statis-
tics Package accepts multiple inputs (1,2); task
CranEB chooses its input between what task Statis-
tics Package generates and what Bog Forecast Ex-
traction generates (3), part of which is indirectly af-
fected by what it produces (4); and 25m Forecast
Generation abstracts a sequence of two tasks into
one as the detailed steps are often (although not al-
ways) unimportant (5).

� Data: This includes the input and output data of the
workflow tasks.

� Invocation: This includes the mechanism (rule) that
triggers the execution of each task. There are two
main choices: explicit invocation, in which a human
initiates the task, and implicit invocation, in which the
task begins immediately upon creation of its input as
long as any specified conditions are satisfied. For ex-
ample, in the cranberry workflow, one may choose
some or even all of the tasks to be associated with
implicit invocation, depending on how much automa-
tion is desired. (Currently, the entire process is com-
pletely automated.)

3



3.2. Workflow Execution

Execution of a workflow involves dealing with the three
main elements of its specification as follows:

� The process typically involves execution of applica-
tions outside the WFMS. For example, task CranEB
in the cranberry workflow is executed by CranEB, an
external surface energy budget program. The WFMS
must follow the logic of the workflow and at any point
interact with the appropriate external system to trans-
fer the control of execution as needed.

� The data may need translation during execution. For
instance, the WFMS should be able to translate 25m
Bog Forecast data from the WFMS internal format to
CranEB’s input format, and Canopy-level Forecast
data from CranEB’s output format back to the WFMS
internal format.

� The Invocation may be automatic or not, depending
on the specification.

Even for a completely automated workflow, users retain ul-
timate control during its execution, monitoring and even in-
fluencing its operation:

� Status monitoring: At any point users may ask for the
execution status of the entire workflow or parts of it.
Status information may be provided by the WFMS or
any external system used in the workflow. Such infor-
mation does not obey to any universal format, but is
very important because it users in deciding if and how
they should intervene to the execution. For example,
an inquisition on the status of the cranberry workflow
may reveal that the incoming weather observations
are garbled, which could lead in the (temporary) de-
activation of the feedback loop through the Statisti-
cal Analysis task and the use of an earlier 25m bog
forecast as input to the CranEB task.

� VCR functionality: User intervention in the execution
of a workflow is reminiscent to the functionality of a
VCR: the user can stop execution, pause execu-
tion and resume soon afterwards, or rewind exe-
cution up to a certain point and resume from there.

3.3. Workflow Evolution

Changes in a workflow may be an every-day routine in a
working environment. Such changes are of three types:

� Modification: new workflow has same objective but
different logic and replaces old one.

� Versioning: as before but new workflow does not re-
place old one, but co-exists with it.

� Extension: new workflow has different objective and
therefore additional logic and replaces old one.

In addition, some environments require dynamic rather than
static workflow evolution, i.e., changing one part of the
workflow while another part is running.

3.4. Workflow Auditing

Workflow executions are related to several pieces and
kinds of information, including the original input and the
final output data, the results of intermediate tasks, and the
interim and final status of the WFMS and the relevant ex-
ternal systems. Users are constantly auditing workflows by
accessing and exploring all this information, analyzing the
workflow results, obtaining reports on efficiency, validating
the used process models, etc. For scientific workflows, this
is often the primary time when ‘science is done’.

4. The Moose Data Model and the Fox Query
Language

As a vehicle to demonstrate the power of our approach,
we use the Horse object-oriented DBMS that we are de-
veloping as part of the Zoo desktop experiment manage-
ment environment. Horse is based on the Moose

�
object-

oriented data model and the Fox
�

query language. Under-
standing the rest of the paper requires some familiarity with
Moose and Fox, so their most important features are de-
scribed below. More details about Moose and Fox can be
found elsewhere [8, 14].

4.1. Moose

There are various kinds of object classes in Moose (tu-
ple, collection or primitive). Objects from these classes are
connected via binary relationships, three of which are rel-
evant to this paper. The structure of a tuple class is de-
fined by an arbitrary number of has-part relationships, each
pointing to a single object. Association relationships con-
nect individual objects in two classes of any kind. An is-a
relationship between two classes has the usual meaning. All
relationships are bidirectional, i.e., they can be traversed in
either direction.

Any relationship between two classes
�

� and
�

� may
be specified as derived from

�
� to

�
� or from

�
� to

�
� or

both. In the first case, for each
�

� object, the related
�

� ob-
ject is constructed or identified based on objects that are (in-
directly) connected to the

�
� object via other relationships

(similarly for the other cases). The construction or identifi-
cation is through a rule, which may be any Fox command
that returns an object. This includes the exec command,
which invokes an external system that, in this case, receives
as input a file containing (parts of) these other objects. The
semantics of a derivation rule from class

�
� to class

�
� is

that it is invoked every time an object is inserted in
�

� , and
whatever

�
� object it produces (if any) is placed in the

�
�

�
Modeling Objects Of Scientific Environments�
Finding Objects of eXperiments

4



object as its value for the corresponding relationship and
vice versa. Thus, derivation rules in Moose are a rather re-
stricted form of triggers[4], in the sense that the only event
that can trigger a rule is an insertion in a specific class.

The data definition language of Moose provides state-
ments to create, destroy, and rename classes and relation-
ships, associate rules to relationships, deactivate rules (tem-
porarily modifying the schema as if the rule does not exist),
and reactivate them back. Rule deactivation holds only for
the current user session and does not affect other users of
the schema.

4.2. Fox

Fox is the declarative query and data manipulation lan-
guage of Moose. One may refer to an object in a Fox com-
mand by its unique object id (assigned by the system), its
name (optionally assigned by the user), or the universal key-
word this in cases an object is uniquely identified by some
context in which the Fox command is nested. In addition,
one may specify an object variable in a Fox query and bind
it to members of a class extent or a collections defined by a
path expression. Path expressions in Fox are used to nav-
igate through interrelated classes. A path expression starts
from a known object specification (constant or bound vari-
able) and follows relationships from that object. The basic
structure of a Fox query is derived directly from SQL:

for � range-binding-list �
select � projection-list �
where � qualification �
as � name � ;

The for clause (optional) defines a set of objects using ob-
ject variables or constants, or both. The select clause de-
fines projections, as in SQL, which could be path expres-
sions. The where clause (optional) involves a condition that
defines the selection among the results. The as clause (op-
tional) specifies a name for future reference to the query
results.

There are five data modification statements in Fox: in-
sert, delete, update, load, and exec. The middle three are
not used in this paper, so they are not described any fur-
ther (load is for bulk insertion of data from a file, gener-
ally into multiple classes at once). The insert command
generates new objects for a class with values for their re-
lationships specified either directly in a list or as the result
of a Fox query, as in SQL. The exec command schedules
the execution of a program (‘agent’) external to Horse. Its
arguments are the name of the program and a list of path ex-
pressions, which form the program input. Examples of Fox
commands are given in the following sections in the context
of describing how workflows are captured within Horse.

5. A Database Way to Workflow Functionality

In this section, we describe how we capture in Moose,
Fox, and Horse all aspects of WFMS functionality pre-
sented earlier (Section 3), i.e., workflow specification, exe-
cution, evolution, and auditing.

5.1. Workflow Specification

One of the most important characteristics of our ap-
proach is that workflows are directly represented as
database schemas. This offers tremendous flexibility and
makes many other aspects of the desired functionality fall
out for free. The essence of the workflow-to-schema map-
ping is as follows:

� tasks, input data, and output data are all represented
as ordinary Moose classes;

� task interconnections are represented by ordinary
Moose relationships; and

� task invocation is expressed by assigning rules on the
appropriate relationships.

The details of this mapping with respect to workflow data,
process, and invocation are presented separately below.

Simple task and data: A workflow task is a process
that operates on some input and produces some output. De-
pending on which aspects of the task one wants to capture,
there are different schemas that can be used. The input and
output data are always represented as Moose classes in a
straightforward way. In some cases, the process itself is
also of interest, e.g., to store information about the duration
of each execution. Then, the corresponding task is repre-
sented in the schema as a Moose class as well, connected
via has-part relationships with the corresponding input and
output classes. In other cases, the task presents no interest,
so it does not appear in the generated schema. Then, the
corresponding input and output classes are connected with
an association relationship.

The first row (row 0) of Figure 5 shows a single task with
its associated data and a schema that can represent it for the
first of the two cases discussed above (when the process is
of interest). The other case is similar: the explicit task class
is missing and the input and output classes are connected
via an association. This holds for the remaining rows of the
figure, where for each of the workflows in the left column
and the corresponding schema that captures the workflow
tasks (second column) are shown. In the sequel, workflows
and schemas in row N are referred to as Figure 5(N).

The action that produces the task’s output is specified by
a derivation rule associated with the appropriate relation-
ship of the output class. This is either the has-part rela-
tionship connected to the task class or the association con-
nected to the input class. In Figure 5, this is indicated by a
D( � input-class � ) label on the appropriate relationship and
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Figure 5. Task interconnections in the Moosemodel

close to the output class. Assume that the task T1 of Figure
5(0) is implemented by an external application aProgram
on its input. The corresponding rule in Fox is

exec aProgram(this.I1)

When the task is invoked, the system should send the ap-
propriate I1 object (possibly with its parts) to the external
application to generate the output.

Task interrelationships: Figure 5 concentrates on a
set of ‘atomic’ workflows (i.e., workflows of the simplest
form), which capture five possible task interrelationships.
The figure shows one natural and consistent way to repre-
sent each workflow with a Moose schema (but this is not
forced upon the designer). By combining the appropriate
schemas shown, one can construct others that represent ar-

bitrarily complex workflows (like the cranberry workflow).

The workflow in Figure 5(1) has tasks T1 and T2 operat-
ing in series (similarly with tasks T1 and T3), and tasks T2
and T3 operating in parallel. The corresponding schema is
straightforward from the associated schema for the simple-
task workflow (Figure 5(0)) and needs no further explana-
tion.

The workflow in Figure 5(2) has task T1 receiving mul-
tiple inputs and providing multiple outputs. The basic
schema is now enhanced with two auxiliary classes, I and
O, which act as input and output concentrators, respectively.

The workflow in Figure 5(3) has task T1 receiving two
alternative inputs, of which it uses one each time. Assum-
ing the general case that the two inputs are of different type,
this is modeled through inheritance, by making the classes
capturing the two input types subclasses of an auxiliary gen-
eral input class I. If the alternative inputs are of the same
type, no inheritance is necessary.

The workflow in Figure 5(4) has task T1 receiving input
indirectly from itself. The schema corresponding to such a
feedback cycle are direct derivatives of the corresponding
single-task schema. For simplicity, we have assumed in the
figure that the output of task T2 is of the same type as the
input of T1, so inheritance does not appear in the schema.

The workflow in Figure 5(5) has a simple workflow (se-
ries of task T1 followed by task T2) abstracted and grouped
into a higher level task T. This is simply modeled by con-
necting the classes of the input of the entire series to its out-
put, either through an explicit task class T (shown in Figure
5) that has the individual task classes and the overall input
and output classes as parts, or through a direct association.
In the schema shown, T.I and T.O are derived relationships
whose rules essentially retrieve the path expressions T.T1.I
and T.T2.O, respectively. These rules are not indicated in
5, to bring out the rules that capture task execution.

From the above exposition, it should be clear that work-
flows of arbitrary complexity can be captured in ordinary
Moose schemas without using any special constructs, al-
most effortlessly. For example, workflows that require con-
structs like if-then-else are captured as parallel tasks (Figure
5(1)). The if-condition is expressed in the qualification of
the derivation rule of the then-task, while the complemen-
tary condition is in the qualification of the derivation rule
of the else-task. Likewise, workflows that require program-
ming constructs like for and while are captured with loops
in the workflow schema (Figure 5(4)). The desired condi-
tion of the construct is expressed in the qualification of the
corresponding derivation rule that initiates the loop, e.g., the
rule that inserts an object in task T1 (Figure 5(4)). As long
as the condition is satisfied, the rule fires and the loop con-
tinues; the first time the condition is not satisfied, the loop
stops.
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Moreover, all desired information on workflow execu-
tions is uniformly and centrally captured in a schema, in-
cluding the data manipulated, details of the execution itself,
the exact steps followed by the workflow and the mecha-
nism used to invoke each one, etc. The schema becomes
the formal document describing every aspect of the work-
flow. The explorability of workflow history thus afforded is
one of the greatest benefits of our approach that make the
implementation of workflow management inside a DBMS
very attractive.

Invocation: Consider the simple example of Figure 5(0).
In the corresponding schema, by the semantics of derivation
rules (Section 4), the task is invoked as soon as an object is
inserted in class T through the triggering of the rule in the
relationship from class T to class O. An additional rule in
the relationship from class I to class T of the form

insert into T() instance()

captures an implicit invocation of the task. As soon as an
object is inserted in I, the above rule inserts an object in
T, which in turn fires off the task. On the other hand, the
absence of such (i.e., if the relationship is not derived) cap-
tures an explicit invocation of the task. Task execution be-
gins only when a human (or some application program) ex-
plicitly inserts an object in T and connects it to the appro-
priate I object.

Clearly, the above can be generalized to arbitrary
schemas, and the decision about implicit or explicit invo-
cation can be made independently for each task by defining
or not the appropriate derivation rules. Again, the ease of
capturing such behavior through purely database means is
clear.

As an example of the entire methodology described
above, Figure 6 shows a schema for the cranberry work-
flow. For simplicity we do not show any of the actual rules
or their invocation mechanism; we simply indicate the exis-
tence of rules by using their names as labels and again this
only for those that capture task execution. Note that tasks
US Forecast Model and CranEB have been captured with
explicit classes due to their importance, while the remain-
ing ones have not, as the workflow designer from the Soil
Sciences Department expressed no interest in incorporating
in her own schema any information on their execution.

5.2. Workflow Execution

Given a schema that captures a workflow as described
above, executing it becomes almost trivial, as it reduces to
simple database insertions; the rules do the rest! As soon
as objects for the initial workflow inputs are inserted into
the appropriate classes, execution starts immediately (if the
first tasks are associated with implicit invocation), or after
a human inserts task objects in the appropriate classes (if

they are associated with explicit invocation). This continues
throughout a workflow execution with explicit or implicit
insertions causing further task firing.

Workflow monitoring is also accomplished by Fox
queries, featuring a novel path-expression connector. In
particular, the traditional connector ‘.’ indicates moving
along relationships of a specific kind from a given (or re-
trieved) object to those related to it. In the presence of de-
rived rules, such relationships may be ‘under construction’.
Querying about the execution status of such a construction
task is essentially querying about the status of the corre-
sponding derived relationship. We take advantage of this
mapping between tasks and relationships and introduce a
novel connector, ‘?’, which can be used anywhere appropri-
ate in path expressions. Informally, the new connector in-
dicates retrieval of the status information generated by the
(external) system processing the corresponding task. This
information is stored as an object in a possibly independent
database created by the individual system for that purpose,
which neither itself nor its schema are necessarily known to
the workflow user.

The connector also indicates normal traversal of the ob-
ject relationships if they have already been constructed, so
that ‘?’ connectors further down the path expression may be
correctly interpreted as well. If the ‘?’ connector is placed
on relationships that are not derived or do not involve exter-
nal execution, it is equivalent to the ‘.’ connector.

For example, consider the cranberry workflow schema
of Figure 6. Assume that one is interested in the status of
the US Forecast Model execution (rule

�����
) initiated by

the most recent weather data, i.e., the most recently added
object in ‘Weather Observations’. Assume that this object
has been named ‘now’. Obtaining the status information of
interest is simply achieved by the query

select now.UsForecastModel?UsForecast

Its result is an object of whatever the status schema main-
tained for executions of the US Forecast Model task hap-
pens to be. Likewise, if one is interested in the status of
the entire workflow initiated by ‘now’ (excluding any visu-
alizations or feedback), the appropriate query would be

select now.UsForecastModel?UsForecast?
25mBogForecast.CranEB?CranEBForecast

Note that the query contains a ‘?’ connector for relation-
ships derived through workflow tasks, and the regular ‘.’
connector for all others. Its result includes anywhere from
zero to three objects, depending on how many of the cor-
responding tasks have been initiated. For example, if the
query is posed while the Bog Forecast Extraction is run-
ning (rule

�����	�
), two objects will be retrieved: the final

status object for the execution of US Forecast Model (rule� ���
) and the current status object for Bog Forecast Ex-
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Figure 6. A schema for the cranberry workflow

traction.
Finally, any form of VCR functionality corresponds to

simple database manipulation. A stop or a pause on
an execution corresponds to deactivating a set of deriva-
tion rules. A resume corresponds to activating these
rules back. A rewind up to a certain task followed by a
resume corresponds to an insertion of a new object in the
relevant task class that has the same input object as before.
Overwriting the old data is simply a set of delete commands.

5.3. Workflow Evolution

By representing workflows as schemas, all flavors of
workflow evolution reduce to schema evolution and are thus
obtained for free. Workflow modification and extension re-
duce to changing the schema, while workflow versioning re-
duces to obtaining versions of the schema, both operations
being well studied and understood in the database world.
Moreover, schema evolution does not require isolation of a
database from its users (except maybe for the portion that
is being evolved), so workflow execution can be done both
statically and dynamically.

5.4. Workflow Auditing

All information relevant to a workflow and its executions
are stored in a database populating the workflow schema,
and can thus be accessed by queries. A workflow execution

Cranberry Workflow

Weather observations Time vs temperature graphs

Figure 7. Cranberry workflow abstraction

can be viewed as a ‘web’ that holds all the information pro-
duced on the way from the input to the output. For example,
assume that the entire cranberry workflow is abstracted in a
single task that accepts a set of weather observations files
as input and produces a set of graphs as output (Figure 7).
These graphs are naturally connected to all the objects con-
taining execution information for the individual tasks that
make this happen. With a single query about a specific out-
put graph, all the information that is connected to the corre-
sponding object is brought along to the user. In addition, as
schemas are objects populating a meta-schema (of a schema
database), any information about the workflows themselves
is obtained through queries as well. Clearly, our schema
representation of a workflow makes auditing fall squarely
into database technology.

6. System Status and Customized Installations

Over the past few years, we have been implementing the
Zoo system [8] , which has several features that are geared
towards supporting the WFMS functionality discussed in
Section 3. Currently, all aspects of specification, execu-
tion, and auditing are operational, including invoking ex-
ternal applications and status monitoring. Workflow evo-
lution has been designed, but implementation has only just
begun. In addition to the cranberry workflow, we currently
have two experimental installations of the system, one at the
Soil Sciences Department and one at the National Magnetic
Resonance Facility At Madison (NMRFAM), hosted by the
Biochemistry Department of the University of Wisconsin-
Madison.

The Zoo installation at the Soil Sciences Department
runs an experiment that predicts watershed response to rain-
fall, runoff, and sediment delivery at an area of interest,
given a specification of vegetation and soil properties. The
Zoo installation at the NMRFAM runs an experiment that
uses a powerful spectrometer, and through further process-
ing of the resulting NMR data by several software packages,

8



elucidates the three-dimensional structure of a biomolecule.
The overall experience of the scientists of both groups with
various tests of the system has been very encouraging.

7. Related work

Over the past few years, workflows have been a favorite
topic in both the commercial and the research worlds. Since
workflow management involves a very broad area of issues,
the systems that have resulted from all this activity present
a considerable diversity in their goals and approaches, mak-
ing it often difficult to compare our work with the entire
field. The main, essentially universal, difference of our ap-
proach with existing workflow systems is in the architecture
(Figure 3). Independent of their goals, primary applications,
and workflow type, the common denominator of all these
systems appears to be the use of a DBMS (or other stor-
age manager or file system) as a data repository, on top of
which one or more software modules implement the desired
workflow functionality. To the contrary, we use the DBMS
itself for all workflow activities, reaping the benefits of the
database technology maturity and obtaining much of the de-
sired functionality for free.

A similar approach is taken by HiPAC [11], an active
DBMS that uses database rules to trigger database opera-
tions as well as external applications. HiPAC offers a more
complete rule system than ZOO, which includes only rules
that seem to be needed to run workflow tasks (as is the case
with almost all of the active DBMSs). We use this technol-
ogy to design workflows and other workflow necessities as
well, such as monitoring, VCR functionality, and dynamic
evolution.

The state-of-the-art in the workflow area is determined
by commercial products [6], whose goals, however, are very
different from ours and include cooperative work, task rout-
ing, and data sharing in business environments. Probably
reacting to the predominant lack of commercial attention to
issues like scalability, reliability, concurrency control, and
recovery [7], most research efforts have focused on inter-
operability, transaction management and high availability
for business workflows, none of which is again among our
interests. Characteristic is the fact that interoperability is
the main goal of the Workflow Management Coalition [7],
a standardization bureau that provides a generic reference
model for workflows.

In general, existing commercial and research systems of-
fer most of the functionality outlined in Section 3. There
are two critical capabilities, however, that are missing from
these systems (with few exceptions): invocation of ad-hoc
external software and dynamic execution monitoring and
reporting. There do exist some systems that offer interac-
tion with specific office applications (specific vendor, op-
erating system, and platform), but the ability to deal with

ad-hoc systems is largely not offered. Likewise, existing
systems do permit the retrieval of statistics about the work-
flow execution, but these are of a fixed, predefined form
whose collection is intertwined with the workflow execu-
tion in a predetermined fashion. The ability that we offer
to users to ask at any point for status information that may
be defined independently by arbitrary external systems or
for the workflow results and any information related to their
creation is not there.

Scientific workflows have been explicitly addressed
mainly by two projects: WASA [12] and LabFlow-
1/LabBase [2]. But again, the goals and approach of these
efforts have been different from ours. WASA uses a com-
mercial WFMS on top of a DBMS extended by advanced
features, and several user-interface, decision support, and
analysis tools that offer a useful front-end to scientific work-
flow management. WASA offers most of the functional-
ity described in Section 3, although possibly restricted by
the capabilities of the underlying WFMS [13]. LabBase is
a DBMS specialized for use by genome laboratories, and
LabFlow-1 is a database benchmark that tests the usability
of storage managers to serve as a basis for WFMS devel-
opment on top of them. Both of these systems fall beyond
the scope of our work, and in general we are aware of no
other system uses a DBMS to provide run-time workflow
management.

Finally, there are a few efforts in the scientific database
area that have similarities with some aspects of our work,
although they have not been directly addressing workflow
issues. The OPM effort at LBNL is probably the clos-
est to this effort [3]. OPM is prominent in the genome
database community and is used to implement some of the
most important international genome databases. It has the
same philosophy as ours in that workflows are represented
as schemas in the OPM data model, which offers two kinds
of classes, one for data and one for protocols, to facilitate
the definition of experimental processes. However, protocol
classes do not capture any active aspects of the correspond-
ing workflow tasks, but are simply data containers, indica-
tors of executions of the corresponding tasks. The workflow
execution is not driven by OPM schemas but externally, and
the resulting data are then stored under OPM. This is the key
difference between OPM and Zoo. In essence, the current
OPM-centered tools approach workflows based on the tradi-
tional architecture of Figure 3a, whereas by using the archi-
tecture of Figure 3b, we are able to provide run-time support
to workflows through the DBMS itself. With respect to data
models, the Extended Entity-Relationship (EER) model has
also been enhanced with several features and used to model
processes [10], again with no active features captured by
the schema. Finally, with respect to invocations of external
systems, computational proxies [5] have been proposed for
interaction between a scientific DBMS and external chem-
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ical models. This is very similar to how the corresponding
Zoo module operates to achieve the same goal. One of the
differences is our use of a generic translation tool in read-
ing declarative specifications to translated between database
object structures and external formats.

8. Summary and Future Work

In this paper, we have introduced the object view of
workflows and have demonstrated that much of the needed
workflow functionality can be supported within a DBMS,
through regular database operations, with no need for devel-
oping specialized workflow software. The key enabling ele-
ment of our database-centric approach is the use of a DBMS
whose data model can express the active aspects of work-
flows as well (like Moose). This allows the DBMS to have
control over workflow executions, and therefore to provide
complete run-time support to workflow management: inter-
acting with external systems implementing workflow tasks,
obtaining their status during their execution, modifying a
workflow during its execution, optimizing workflow tasks
as globally as possible, etc. Moreover, the object-oriented
schema representation of a workflow provides an integrated
view of all workflow-related information that captures in a
natural way the connection between the workflow process
and the data it manipulates, thus permitting several impor-
tant types of queries and analysis of workflow execution.
Our implementation of most of the desired functionality in
the HorseDBMS and our experimental installations in two
scientific laboratories indicate that the object-view of work-
flows has many benefits and can serve the needs of several
environments well.

The main goal of our future work is to demonstrate that
the object view for workflows and the resulting DBMS-as-
a-WFMS architecture can provide the remaining workflow
functionality that we have not addressed in this paper, e.g.,
transaction management, workflow recovery, and workflow
interaction. We believe this is indeed the case, and a pos-
sible success in this endeavor will be very important and
beneficial to several business environments. Other future
tasks include completion of the implementation of Horse
with respect to the features necessary for workflows, inves-
tigation of additional forms of derivation rules (triggers) and
their potential benefits for workflow management, and de-
veloping a visual user interface suitable for designing work-
flows at a level higher than the schema.
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