
DIVA: INDEXING HIGH-DIMENSIONAL DATA BY
“DIVING” INTO VECTOR APPROXIMATIONS

Konstantinos Tsakalozos1, Spiros Evangelatos2 and Alex Delis3

University of Athens, GR15748, Athens, Greece
E-mail: {k.tsakalozos1 , s.evangelatos2, ad3}@di.uoa.gr

ABSTRACT

Contemporary multimedia, scientific and medical ap-
plications use indexing structures to access their high-
dimensional data. Yet, in sufficiently high-dimensional
spaces, conventional tree-based access methods are eventu-
ally outperformed by simple serial scans. Vector quantiza-
tion has been effectively used to index data that are mostly
distributed uniformly. However, in real-world applications,
clustered data and skewed query distributions are the norm.
In this paper, we proposeDiVA , an approach that selectively
adapts the quantization step to accommodate varying index-
ing needs. This adaptation mechanism triggers the restruc-
turing and possible expansion ofDiVA so as to provide finer
indexing granularity and enhanced access performance in cer-
tain “hot” areas of the search space. User-supplied policies
help both identify such “hot” areas and satisfy versatile appli-
cation requirements. Experimentation with our detailed pro-
totype shows that in a real-world data set,DiVA yields up-to
64% reduced I/O compared to competing methods such as the
VA-file and theA-tree.

1. INTRODUCTION

A wide range of contemporary applications in the fields of sci-
entific computing, multimedia retrieval, earth and space sci-
ences, as well as bioinformatics operate on multi-dimensional
data. In order to help speed-up the evaluation of queries in
these high-volume/high-dimensional data sets, specialized in-
dexes have been proposed [1, 2, 3]. Such indexing mecha-
nisms are created using a set of feature vectors –collectively
known as the “database”– and the adoption of a distance
function. Two key operations for similarity searches inn-
dimensional spaces are the range and thek-nearest-neighbor
(k-NN) queries. In the former, all pertinent vectors within an
area are retrieved while in the latter, thek-closest vectors to a
query vector are retrieved.

In high-dimensional spaces, tree-based indexing methods
are known to be occasionally outperformed even by simple
serial scans [1, 2]. This “curse of dimensionality”, has led

This work has been partially supported by theD4Science I & IIEU FP7
projects.

to the introduction of approximation-based access methods
that try to reduce search cost byserially scanningcompact,
approximate, representations of data. In this context, vector
quantization has been established as an effective technique.
VA-files have successfully exploited scans on approximate,
quantized data to partially lift the dimensionality curse [4].
By and large, vector quantization approaches have assumed
mostly uniformly-distributed data. Pre-processing of data has
been proposed as a way to “smooth” skewed data so that
approximation-based methods can work more efficiently [5].
However in real-world settings, not only skewed data but also
clustered query distributions are frequently encountered[6].

One should keep in mind that the cost of serial scans,
including scans performed on approximations, scales lin-
early with the volume of the indexed data. But hierarchical
space partitioning methods can be used to allow better scal-
ing against voluminous data sets. Due to this fact, a number
of space partitioning methods that also employ approxima-
tions have been proposed. TheA-tree [3] attempts to eliminate
large areas of the search space by introducing the notion of
virtual bounding rectangles (VBRs) which are tightly packed
quantized minimum-bounding rectangles (MBRs). MBRs are
also used in the three-level tree structure proposed in theIQ-
tree [7]. In this structure the first level plays the role of a
directory of MBRs pointing to the quantized pages of the sec-
ond level. In similar spirit, the space partitioning employed
by theGC-tree [8] attempts to provide higher indexing detail
in areas of dense data distribution.

In all of the above indexing methods, hierarchical space
partitioning is used in conjunction with data quantization.
Yet, these methods are limited to predefined heuristics for
constructing the index, ignoring any application specific
needs. In this paper, we address this limitation. We pro-
poseDiVA , an indexing method whose operation allows for
modular components to drive its expansion and structure. Us-
ing this approach, we implemented a policy that targets query
turnaround time by reducing the overall I/O overhead.DiVA
can facilitate access to clustered data and at the same time effi-
ciently index specific areas that receive a high-traffic of fine-
granularity queries. In summary, the contributions ofDiVA
are that it:

• decouples index expansion from the rest of its query

evaluation operations. The structure of the index
is driven by application-specific policies that register
with DiVA while the latter stays on-line. High-level
application-specific requirements are allowed to help in
tuning the method’s performance with pertinent poli-
cies.

• can selectively adapt its indexing granularity in specific
sub-spaces. This is facilitated by its hierarchical and
highly compact structure.

• uses multiple segments of approximated data which are
ultimately scanned sequentially to yield data vectors
relevant to the queries under evaluation.

Our experimentation with both synthetic and real data sets
indicates thatDiVA outperforms both theVA-file and theA-
tree in terms of I/O load, achieving a notable improvement
in clustered, high-dimensional spaces. In uniformly pop-
ulated multi-dimensional spaces,DiVA matches the perfor-
mance of theVA-file and consistently outperforms theA-tree
in the presence of highly-clustered data sets.

2. THE DiVA INDEX

DiVA is an unbalanced hierarchical structure whose every
node resembles theVA-file. An unbalanced structure was
chosen since in high-dimensional spaces, balanced structures
generally result in large, ineffective bounding volumes. Ap-
proximated data are used to speed up the search within each
node; every such node also contains data vectors. This ap-
proach aims to retain the good properties ofVA-files in high
dimensional spaces whileDiVA ’s hierarchical structure pro-
vides enhanced adaptation capabilities. Node creation and
index structure may be controlled by pluggable application-
specific policies. Finally,DiVA carries out I/O operations us-
ing only forward seeks so as to better exploit the underlying
storage subsystem.

2.1. Structure and Operation ofDiVA

DiVA uses a hierarchical structure of nodes whose each suc-
cessive level provides greater indexing accuracy. Each node
is similar to aVA-file and comprises of two files:a)a file with
approximations termeda-file andb) a file of records termed
r-file holding data vectors or pointers to other nodes.

Approximations stored in thea-file are produced through
quantization of the corresponding data vectors. In essence,
each approximation represents a rectangular cell in the in-
dexed space. In Figure 1, we present one such 2-dimensional
space indexed byDiVA . On the right side of Figure 1, we
show the structure ofDiVA . Cells C1, C2, C3have corre-
sponding entries in the root node. CellC4 does not appear in
the index since it does not contain any data vectors. For the
approximations ofC2 andC3, there are two lists of data vec-
tors. The list corresponding toC2 contains data vectorsV2
andV3, while the list ofC3 consists of a single vector. Cell

V6
V7V4

V5

V2

V3

V8

C1.1 C1.2 C1.3 C1.4

V4 V5 V8 V6 V7

C3C2C1

V2V1V3

C4

Indexed space

C3

C1.3

V1

C1.4C1.1

C1

C1.2

C2

Nodes

r−files

a−files

Fig. 1. Sample of aDiVA structure in a2-D space.

C1 is further indexed by a second level node. The approxi-
mation ofC1 in the r-file of the root node points to a record
which in turn points to a child node. The child node contains
the approximations of cellsC1.1, C1.2, C1.3, C1.4and the
corresponding data vector lists in the child node’sr-file.

Contrary to theVA-file, DiVA always stores each vector
approximation only once, regardless of the number of data
vectors in the approximation cell. In effect, vectors of the
same cell are stored in a list of records formed inside ther-
file.

A single record in ther-file may be eithera) a pointer to
a child node orb) part of a list of data vectors. All entries in
a records list contain data vectors from the same space cell.
The same applies to all data vectors encountered by following
a pointer to a child node. Lower level nodes are used to further
divide a cell into multiple cells with higher granularity. For
instance in Figure 1, cellsC1.xare used to subdivide cellC1.

Each stored approximation has a corresponding record in
the r-file. The structure ofDiVA allows us to store an ar-
bitrarily high number of approximations per node. Yet, to
guarantee the uniqueness of approximations, during insertion,
the entirea-file has to be scanned. This insertion cost can be
lowered by performing batch insertions of data vectors, an
effective technique that we implemented and allowed us to
speed-up our experiments significantly.

2.2. Algorithms

DiVA supports a full range of lookup operations including ex-
act, range andk-NNqueries. Here for brevity, we only present
thek-NNsearch algorithms.
k-NN Query: Alg. 1 and 2 collaboratively perform the
DiVA k-NNsearch starting from the root and then progressing
through the nodes recursively. The results of the search, to-
gether with potential matching record numbers, are kept in the
special containerH . Every visited node, is searched in two
distinct phases presented in Alg. 1 and Alg. 2. In Alg. 1, the
a-file of the node is scanned sequentially to locate potential
matching records. The recursive nature of the algorithm ne-
cessitates the tagging of the record numbers selected with the
current node identifier, so as to differentiate them from record

numbers referring to other nodes. Scanning thea-file is inter-
rupted if the approximation of the cell where the query vector
belongs is encountered (line6 Alg. 1). This cell is likely to
contain the nearest neighbors of the queryq, thus we choose
to temporarily interrupt the approximations scanning and pro-
ceed with examining the relevant data vectors by issuing a call
to Alg. 2. After this interruption, we cancel the scanning of
the rest of the approximations in thea-file if we are certain
that there are no data vectors closer than the ones gathered so
far. We perform this check by first making sure that we have
gathered at leastk results and comparinga) the distance of
the query vector to closest border of the enclosing cell against
b) the upper distance of the thus far k-th nearest neighbor to
the query vector. During the second phase (Alg. 2), the cor-
responding records are retrieved from ther-file, starting from
the ones with the most potential to be closer to the query vec-
tor q. If a pointer to a child node is found, a call to Alg. 1 is
issued, using the child node as the starting query node anew.
When the Alg. 1 ends,H contains the data vectors that form
the results of the query.

H holds two types of elements:a) pairs of the form
(recno, node-id), whererecnois the identifier of a potentially
matching record andb) data vectors. For all elements, an up-
per and a lower distance bound from the query vectorq are
maintained. For each matching approximation found in the
a-file, the upper and lower distance bounds from the query
vectorq are computed and passed along with the correspond-
ing record number to the containerH (line 4 of Alg. 1). For
a data vector, the upper and lower distance bounds coincide
with the distance of the vector itself fromq.

The elements inH are kept in ascending order based on
their upper distance. The upper distance bound of thek-th
element is maintained and cached as a number of important
conditions depend on this value. Any element whose lower
distance bound is less than or equal to the upper distance of
the k-th element can be, or lead to, data vectors among the
k nearest neighbors. Thus, at any moment, all items in the
containerH must satisfy Expr. 1:

lower bound(x) ≤ upper bound(xk), ∀x ∈ H (1)

Additionally, any item encountered that satisfies Expr. 1, is
inserted inH (lines5 Alg. 1 & line 18 Alg. 2). Note that, at
any moment, more thank elements may exist inH .

As the algorithm progresses, element insertion and re-
moval may cause thek-th element inH to change, leading to
the gradual decrease of the upper distance bound of thek-th
element. Consequently, a number of elements, that no longer
satisfy Expr. 1 must be dropped fromH . We refer to the pro-
cess of dropping these elements as thetrim downoperation.
Overall, Alg. 1 and Alg. 2 aim to minimize the number of
record reads by visiting as early as possible, the areas closer
to the query vectorq.

Algorithm 1 k-NN Search
Input: k: Number of nearest neighbors
q: Query vector
H : Heap-like container of intermediate results
n: Node whose approximations to scan
Output: H : Heap-like container of results

1: for va ∈ { approximations ina-file of n} do
2: if va.low(q) ≤ kth element(H , k).up then
3: recno := position ofva in a-file of n

4: H .insert(recno,va.up(q), va.low(q), id of n)
5: H := trim down(H, k)
6: if va.low(q)= 0 then
7: H := k-NN Datascan(k, q, H,n)
8: qva := approximateq using quantization ofn
9: if closestborder(qva, q) > kth element(H , k).up then

10: /*All k-NN were insideqva cell.*/
11: return H

12: end if
13: end if
14: end if
15: end for
16: H := k-NN Datascan(k, q, H,n)
17: return H

3. ADAPTATION MECHANISM

Statistics in conjunction with numerous heuristics are com-
monly used to pinpoint “hot” areas [3, 7, 8]. But indexing
granularity also largely depends on the needs of the appli-
cation and can be affected by the characteristics of the un-
derlying hardware. This suggests that index granularity and
structure should not be determined only by examining data or
query distributions. We allow the application to designatea
suitable index expansion policy as well as to choose the ap-
propriate timing for triggering the index adaption. Policies
essentially designate theDiVA structure changes that should
occur to improve performance. In case of a new node ad-
dition, the policy should provide: a) suggestions regarding
which space cells should be further indexed (“hot” space ar-
eas), b) the per-dimension quantization step to be used in a
newly created node.DiVA places all vectors that fall within
the same cell in the same record list since they all produce the
same approximation. Therefore, the data vectors that will be
indexed with finer granularity are all part of a single list of
records.

In what follows we present a policy that tries to minimize
the wall-time incurred in the evaluation of queries and results
in drastically reduced overall I/O overhead. This allows us
to compare the performance ofDiVA to other indexing ap-
proaches in terms of I/O.

Identifying “hot” spots: This policy computes a score for
each list of records that may be indexed in finer granularity.
The record-list with the highest score is selected for expan-
sion. The score function evaluated for all candidate record

Algorithm 2 k-NN Datascan
Input: k: Number of nearest neighbors
q: Query vector
H : Heap-like container of intermediate results
n: Node whose records to scan
Output: H : Heap-like container of results

1: O := entries ofH with id equal to that ofn
2: while O 6= ∅ do
3: (recno, low, up) := element inO with minimum recno
4: remove fromH entry identified by recno and id ofn
5: rec := record inr-file of n at position recno
6: if rec is part of a data vector listthen
7: d := dist(q, vector inrec)
8: if d ≤ kth element(H , k).up then
9: H .insert(rec.vector,d)

10: end if
11: next := position of the next record in the data list ofrec

12: if next > recno then
13: H .insert(next, up, low, n.id)
14: end if
15: else if rec points to child node with higher index granularity

then
16: H := k-NN Search(k, q, H, rec.child)
17: end if
18: H := trim down(H, k)
19: O := entries ofH with id equal to that ofn
20: end while
21: return H

lists is:

Score= Current− Future (2)

TheScoreis estimated through a projection of the future cost
(Future) and the current processing costs (Current) entailed
in the operations performed within the record list examined.

While operational, theDiVA measures the average time
R required to access and process a single record. Similarly,
the average times expended in dealing with a single approx-
imation is also obtained. These two statistics capture the I/O
and processing time required by the current hardware and
software environment. The initialization costo needed by
the computer system for opening files hostingDiVA nodes
is also gathered. Three extra statistics,l, h andqs, are main-
tained on a per-record-list basis. A list containingl records is
scanned during the evaluation ofqs queries. The total num-
ber of records of the list at hand that were part of the result in
thoseqs queries is denoted ash (hits).

Using the above statistics, the current list-scan cost for all
queriesqs is:

Current= qsRl (3)

The estimation of the total future cost is more complex:

Future= qs(o + Approx+ Proj Reads) (4)

whereo indicates the average delays of initializing internal
structures for accessing a node,Approx is the expected time

expended for scanning through the approximations that will
be created andProj Readsis the expected delays in reading
the records of the new node.

The time required for scanning the approximations
Approxis proportional to the number of new approximations
because during ana-file scan all the approximations are typ-
ically examined. Under the assumption that in the new node
each data vector will have a corresponding approximation,
this number can be estimated. Eq. 5 shows the expected de-
lays entailed in accessing and manipulating the approxima-
tions.

Approx= s × l (5)

Proj Readsis an estimate of the per query delay cost en-
tailed in accessing the data vectors of the new node. The ex-
pected reads consist of:a) the data vectors that will be part
of the results (as estimated from previous query evaluations,
h) andb) some additional vectors that will be read but not
match the query (misses), denoted asm in Equation 6. The
non-matching vectors (m) are estimated as follows: the hits of
each query are assumed to be inside ann-dimensional cube.
Any time a new node appears, it partitions the sub-space con-
taining thisn-cube in finer grained cells. The extram ele-
ments read but dropped from the results are expected to be in
cells that intersect with the surface of then-cube. Consider-
ing the above, the per query expected time cost for reading
records is:

Proj Reads= R(h + m)/qs (6)

At this point and under the uniform distribution assump-
tion, we can estimate the densityD of data vectors within
each cell as:D = l/2va bits whereva bits is the bit length of
each approximation in the new node.

Let B be the number of cells that intersect with the sur-
face of then-cube enclosing the results. On average, we ex-
pect only half the volume of theseB cells to reside within the
n-cube. ConsequentlyB×D

2
vectors residing in the aforemen-

tionedB cells will not match the query. So, Eq. 6 becomes:

Proj Reads= R(h/qs + B × D/2) (7)

The edgee of the n-cube, can be expressed in terms of
cells if we consider then-cube’s volumeV to be proportional
to the number of hits per query:

V = en = h/(qs × D) ⇒ e = n

√

h/(qs × D) (8)

Using e, we are able to estimateB, sinceB is essentially
equal to the surface of then-cube:

B = 2nen−1 = 2n(
h

qs × D
)

n−1

n (9)

With the help of Eq. 3, 4, 5, 7, 9 the score function in Eq. 2 is
computed for each vector list; the one with the overall highest
score is selected for further indexing.

Setting the quantization step:As soon as the highest scor-
ing record list is identified the policy determines the per-
dimension quantization step. The number of bits to be used
for the approximations of the new node are dynamically set
according to the standard deviation and dimensionality of the
data being indexed. More bits are used for high dimensional
spaces with vectors displaying low deviation. The bit alloca-
tion among dimensions follows a heuristic proposed in quan-
tization theory that is also used in [5]. More bits are assigned
to dimensions over which data have greater variance so as to
maximize the efficiency of the quantized approximations.

4. EXPERIMENTAL EVALUATION

In our evaluation we measure I/O overhead as this is the met-
ric used to measure the effectiveness of most multidimen-
sional indexing methods. Whenk-NN queries are involved,
we evaluateDiVA against Sequential Scan, theVA-file, theA-
tree and an index we callVApfile. VApfile is our implementa-
tion of the most important features suggested by theVA+file,
namely the Karhunen Loeve Transformations (KLT) and a dy-
namic bits-per-dimension allocation scheme. Both these fea-
tures enhance the effectiveness of theVA-file when correlated
data vectors are present in the data distribution. However,ap-
plying the transformation in the entire data space results in
approximate query results.

4.1. Synthetic Data Set

We created a synthetic data set and measured the I/O perfor-
mance while varying the following properties:a) dimension-
ality, b) volume of indexed data andc) percentage of clus-
tered data vectors. The space we use as thebase caseconsists
of 200, 000 data vectors featuring32 dimensions. Out of the
200, 000 vectors50, 000 are uniformly distributed and the rest
are grouped into30 clusters. Members of each cluster follow
the Gaussian distribution withσ = 106. With thisσ value we
seek to produce clusters that will be indexed using a gradu-
ally increasing quantization step. One tenth of the clusters is
considered “hot” and is targeted by queries. The query load
consists ofk-NNqueries withk=100.
Dimensionality: we vary dimensionality from4 to 96 and
measure howDiVA copes with the curse of dimensionality
in terms of I/O performance (Figure 2(a)). Increasing dimen-
sionality results in larger data vectors, thus the total size of the
indexed data increases. This trend is common for all indexing
methods of Figure 2(a).DiVA performs grouping of multiple
vectors under a single approximation, thus it manages to sur-
pass theVA-file performance. With respect to theA-tree and
while experimenting with its publicly available implementa-
tion [9], we were able to evaluate its performance only up to
56 dimensions. As shown,DiVA exhibits a clear advantage in
the entire range of dimensions tested.

Volume of vectors: the volume of data affects indexes based
on sequential search.DiVA does combine features from both
sequential search and tree-based access methods. During this
evaluation, we increase the amount of indexed data in such a
way that the proportion between clustered and uniformly dis-
tributed vectors stays the same. We also keep the number of
clusters in space fixed. Figure 2(b) shows the I/O load for
each index in this evaluation scenario. Thank to their hier-
archical structure, bothDiVA and theA-tree are able to skip
examining large volumes of data. Hence, they are less af-
fected by increase in data volumes, compared to theVA-file
based indexes.

Clustered vectors: VA-file is known to perform well when
there are no clustered data [4].DiVA on the other hand, em-
ploys its hierarchical structure to efficiently index both uni-
form and clustered data. Here, we vary the percentage of
the clustered data while keeping the total number of indexed
vectors fixed to200, 000. Figure 2(c) presents the I/O load
performance of all indexes. As data clustering increases, the
VA-file is unable to exploit its approximations and thus, more
data vectors have to be examined. The KLT applied by the
VApfile provides an advantage over theVA-file as the clus-
ter size increases. Under uniformly distributed data, theA-
tree performs better than theVA-file but worse thanDiVA . As
more data are moved to the clusters,DiVA extends its perfor-
mance lead.

4.2. Image Feature Vectors

The real data set used during evaluation consists of200, 000
feature vectors extracted from images using methods similar
to [10]. The dimensionality of this data set can be adjusted by
altering the number of extracted features. The vector distribu-
tion produced clearly favors theVA-file. For each data vector
a unique approximation is created using the 4 most signifi-
cant bits from each dimension. In other words, the majority
of space cells produced by theVA-file contain a single data
vector. Thus, it makes little difference if KLT is used to treat
data correlation by theVApfile. Yet, as shown in Figure 3,
there is still room for improvement usingDiVA . We assign
only 2 bits per dimension for the approximations of the root
node and then let the adaptation policy refine the indexing
granularity. DiVA outperforms theVA-file based indexes by
as much as64% for a query load consisting ofrangequeries.
This is because with each new nodeDiVA increases the num-
ber of approximations read while at the same time reduces the
number of read records that contain feature vectors (Fig. 4).
Due to the fact that approximations are shorter than feature
vectors and are hierarchically structured, the overhead sus-
tained by introducing more approximations adds only17% to
the overall I/O overhead. At the same time, the fewer record
reads reduce the overall I/O by88%.

 10

 100

 1000

 10000

 100000

8 16 24 32 40 48 56 64 72 80 88 96

V
ol

um
e

(K
B

yt
es

)

Dimensions

DiVA
VA-file
VApfile

Seq. Scan
A-tree

(a) Dimensionality impact onDiVA .

 10

 100

 1000

 10000

50 100 150 200 250 300

V
ol

um
e

(K
B

yt
es

)

Thousands of data vectors

DiVA
VA-file
VApfile

Seq. Scan
A-tree

(b) DiVA under increasing index size.

 10

 100

 1000

 10000

 100000

 10 20 30 40 50 60 70 80 90

V
ol

um
e

(K
B

yt
es

)

Percentage of clustered data vectors

DiVA
VA-file
VApfile

Seq. Scan
A-tree

(c) DiVA when clustered data in-
crease.

Fig. 2. Performance evaluation ofDiVA , A-tree,VApfile andVA-file using synthetic data sets.

 100

 1000

 10000

 100000

14 28 42 56 70 84 98

V
ol

um
e

(K
B

yt
es

)

Dimensions

DiVA
VA-file
VApfile

Seq. Scan

Fig. 3. I/O performance ofVA-file andDiVA on real data set.

 0

 200

 400

 600

 800

 1000

1 3 5 10 20 30 40 60 80 110 Max

V
ol

um
e

(K
B

yt
es

)

Nodes

Records
Approximations

Fig. 4. DiVA ’s I/O reduced as more nodes added.

5. CONCLUSIONS AND FUTURE WORK

DiVA offers fast navigation to query regions of interest and
the structure of its nodes efficiently handles high-dimensional
vectors. Experimentation with both real and synthetic data
sets shows thatDiVA produces significant improvements
compared to competing methods. Our future work plans in-
clude: a) the use of advanced statistical models in determin-
ing the optimal granularity for node expansion and finally,
b) the deployment ofDiVA in parallel and distributed sys-
tems.

6. REFERENCES

[1] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger, “The
R*-Tree: An Efficient and Robust Access Method for Points

and Rectangles,” inProc. of the 1990 ACM SIGMOD, Atlantic
City, NJ, May 1990.

[2] N. Katayama and S. Satoh, “The SR-tree: An Index Structure
for High-Dimensional Nearest Neighbor Queries,” inProc. of
ACM SIGMOD, Tucson, AZ, May 1997, ACM Press.

[3] Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima, “The
A-tree: An Index Structure for High-Dimensional Spaces Us-
ing Relative Approximation,” inProc. of 26th VLDB Conf.,
Cairo, Egypt, Sept. 2000, pp. 516–526.

[4] R. Weber, H.-J. Schek, and S. Blott, “A Quantitative Analy-
sis and Performance Study for Similarity-Search Methods in
High-Dimensional Spaces,” inProc. of 24th VLDB Conf., San
Francisco, CA, 1998.

[5] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and A. El Ab-
badi, “Vector Approximation-based Indexing for Non-uniform
High Dimensional Data Sets,” inProc. of the 9th CIKM Conf.,
McLean, VA, 2000, ACM.

[6] T. Barclay, D. Slutz, and J. Gray, “TerraServer: A Spatial
Data Warehouse,” inProc. of ACM SIGMOD Conf., Dallas,
TX, 2000, pp. 307–318.

[7] S. Berchtold, C. Bohm, H.V. Jagadish, H-P. Kriegel, and
J. Sander, “Independent Quantization: an Index Compression
Technique for High-dimensional Data Spaces,” inProc. of the
16th IEEE ICDE, 2000.

[8] Guang-Ho Cha and Chin-Wan Chung, “The gc-tree: a high-
dimensional index structure for similarity search in image
databases,”IEEE Transactions on Multimedia, vol. 4, no. 2,
pp. 235–247, 2002.

[9] Y. Sakurai, “The A-tree: source code release,”
http://www.kecl.ntt.co.jp/csl/sirg/ people/yasushi /index.html,
NTT Communication Science Laboratories, Seika, Soraku,
Kyoto, Japan.

[10] Khanh Vu, Kien A. Hua, and Wallapak Tavanapong, “Image
retrieval based on regions of interest,”IEEE Transactions on
Knowledge and Data Engineering, vol. 15, no. 4, pp. 1045–
1049, 2003.

