DIVA: INDEXING HIGH-DIMENSIONAL DATA BY
“‘DIVING” INTO VECTOR APPROXIMATIONS

Konstantinos TsakalozgsSpiros Evangelatésand Alex Delis

University of Athens, GR15748, Athens, Greece
E-mail: {k.tsakalozok, s.evangelatds ad’*} @di.uoa.gr

ABSTRACT to the introduction of approximation-based access methods
Contemporary multimedia, scientific and medical ap-that try_to reduce search .COSt bgrially scannmg:ompact,
L : . . " approximate, representations of data. In this contextovec
plications use indexing structures to access their high- o : . .
.) : o) . . guantization has been established as an effective techniqu
dimensional data. Yet, in sufficiently high-dimensional) ; ;
. VA-files have successfully exploited scans on approximate,
spaces, conventional tree-based access methods are-eventu

ally outperformed by simple serial scans. Vector quantizaguan'[ized data to partially lift the dimensionality curgg. [

tion has been effectively used to index data that are mostlBy and large, vector quantization approaches have assumed

distributed uniformly. However, in real-world applicatis, X]ostly uniformly-distributed data. Pre-processing obdaas

clustered data and skewed query distributions are the norr’rt1)een proposed as a way to "smooth” skewed data so that

In this paper, we propos@iVA, an approach that selectively approximation-based methods can work more efficiently [5].

ot ..~ However in real-world settings, not only skewed data bud als
adapts the quantization step to accommodate varying index: e
clustered query distributions are frequently encountgsgd

ing needs. This adaptation mechanism triggers the restruc One should keep in mind that the cost of serial scans,

turing and possible expansion DfVA so as to provide finer . . N .
including scans performed on approximations, scales lin-

indexing granularity and enhan rformance-in .) . .
Fie“ g“g anularity and enhanced access perfo 1ancer (.:eearly with the volume of the indexed data. But hierarchical
tain “hot” areas of the search space. User-supplied pslicie

help both identify such “hot” areas and satisfy versatilgliap space partitioning methods can be used to allow better scal-

; : : . . . ing against voluminous data sets. Due to this fact, a number
cation requirements. Experimentation with our detaileat pr of space partitioning methods that also emplov approxima-
totype shows that in a real-world data sBifyA yields up-to P P 9 ploy app

64% reduced I/O compared to competing methods such as tﬁgns have been proposed. Theree [3]. attempts to ellmmqte
VAfile and theA-tree. Ia}rge areas qf the search space by mtlroducm.g the notion of
virtual bounding rectangles (VBRs) which are tightly patke
quantized minimum-bounding rectangles (MBRs). MBRs are
1. INTRODUCTION also used in the three-level tree structure proposed itQhe
tree [7]. In this structure the first level plays the role of a
A wide range of contemporary applications in the fields of sci gjrectory of MBRs pointing to the quantized pages of the sec-
entific computing, multimedia retrieval, earth and spacde Sc g |evel. In similar spirit, the space partitioning empdy
ences, as well as bioinformatics operate on multi-dimevaio by theGC-ree [8] attempts to provide higher indexing detail
data. In order to help speed-up the evaluation of queries iy areas of dense data distribution.
these high-volume/high-dimensional data sets, speetaliz- In all of the above indexing methods, hierarchical space
dexes have been proposed [1, 2, 3]. Such indexing mechgatitioning is used in conjunction with data quantization
nisms are created using a set of feature vectors —colléctivevet, these methods are limited to predefined heuristics for
known as the “database™ and the adoption of a distancgonstructing the index, ignoring any application specific
function. Two key operations for similarity searchesnn needs. In this paper, we address this limitation. We pro-
dimensional spaces are the range andkthearest-neighbor posepjVA, an indexing method whose operation allows for
(k-NN) queries. In the former, all pertinent vectors within anmodular components to drive its expansion and structure. Us
area are retrieved While in the latter, thelosest vectors to a ing this approach, we implemented a policy that targetsyquer
query vector are retrieved. turnaround time by reducing the overall I/O overheBiVA
In high-dimensional spaces, tree-based indexing methodsn facilitate access to clustered data and at the sameffime e
are known to be occasionally outperformed even by simpl@jently index specific areas that receive a high-traffic aé{in
serial scans [1, 2]. This “curse of dimensionality”, has ledgranularity queries. In summary, the contributions2¥A

This work has been partially supported by théScience | & IIEU FP7 are that it:)))
projects. e decouples index expansion from the rest of its query

evaluation operations. The structure of the index Indexed space Nodes

is. drivgn by application-specific poligies thqt register cL Mve | c4
with DiVA while the latter stays on-line. High-level Gdl eid
application-specific requirements are allowed to help in vs| V8
tuning the method’s performance with pertinent poli- c12 c13
cies. c2 cs

e can selectively adapt its indexing granularity in specific XVZVS vi
sub-spaces. This is facilitated by its hierarchical and x :
highly compact structure.

e uses multiple segments of approximated data which are
ultimately scanned sequentially to yield data vectors Fig. 1. Sample of &iVA structure in &-D space.
relevant to the queries under evaluation.

. .Our experimentation with both synthetic fand real data setg 1 is further indexed by a second level node. The approxi-
indicates thaDiVA outperforms both th&/Afile and theA- a0n ofC1 in ther-file of the root node points to a record
tree in terms of I/O load, achieving a notable improvemenhich in turn points to a child node. The child node contains

in clustered, high-dimensional spaces. In uniformly popyhe gpproximations of cell€1.1, C1.2, C1.3, C1.4nd the
ulated multi-dimensional spaceBjVA matches the perfor- corresponding data vector lists in the child nodefe.

mance of the/A-file and consistently outperforms tiietree Contrary to thevAile, DiVA always stores each vector

in the presence of highly-clustered data sets. approximation only once, regardless of the number of data
vectors in the approximation cell. In effect, vectors of the
2. THE DiVA INDEX same cell are stored in a list of records formed insiderthe

file.
DiVA is an unbalanced hierarchical structure whose every single record in the-file may be eithem) a pointer to

node resembles theAdfile. An unbalanced structure Was j child node om) part of a list of data vectors. All entries in
chosen since in high-dimensional spaces, balanced Stesctu 4 yecords list contain data vectors from the same space cell.
generally result in large, ineffective bounding volume-A e same applies to all data vectors encountered by follpwin
proximated data are used to speed up the search within eagthsinter to a child node. Lower level nodes are used to furthe
node; every such n_ode also contains qata vectors. _Th'S aBivide a cell into multiple cells with higher granularity.of
proach aims to retain the good properties/@files in high ihstance in Figure 1, cell61.xare used to subdivide cellL
dimensional spaces whilBiVA’s hierarchical structure pro- Each stored approximation has a corresponding record in
vides enhanced adaptation capabilities. Node creation arme rfile. The structure oDiVA allows us to Store an ar-
index structure may be controlled by pluggable applicationbitrarily high number of approximations per node. Yet, to
specific policies. FinallyDiVA carries out I/O operations us- 4 antee the uniqueness of approximations, during ingert
ing only forward seeks so as to better exploit the underlyin he entirea-file has to be scanned. This insertion cost can be

storage subsystem. lowered by performing batch insertions of data vectors, an
_ _ effective technique that we implemented and allowed us to
2.1. Structure and Operation of DiVA speed-up our experiments significantly.

DiVA uses a hierarchical structure of nodes whose each suc-

cessive level provides greater indexing accuracy. Eaclkenod 2 algorithms

is similar to avA-file and comprises of two files)a file with

approximations termed-file and b) a file of records termed DiVA supports a full range of lookup operations including ex-

r-file holding data vectors or pointers to other nodes. act, range anll-NNqueries. Here for brevity, we only present
Approximations stored in tha-file are produced through thek-NNsearch algorithms.

guantization of the corresponding data vectors. In essenck-NN Query: Alg. 1 and 2 collaboratively perform the

each approximation represents a rectangular cell in the irDiVA k-NNsearch starting from the root and then progressing

dexed space. In Figure 1, we present one such 2-dimensiortakough the nodes recursively. The results of the seareh, to

space indexed byiVA. On the right side of Figure 1, we gether with potential matching record numbers, are kefiten t

show the structure oDiVA. Cells C1, C2, C3have corre- special containef. Every visited node, is searched in two

sponding entries in the root node. CEW does not appear in distinct phases presented in Alg. 1 and Alg. 2. In Alg. 1, the

the index since it does not contain any data vectors. For tha-file of the node is scanned sequentially to locate potential

approximations o€£2 andC3, there are two lists of data vec- matching records. The recursive nature of the algorithm ne-

tors. The list corresponding 62 contains data vectord2 cessitates the tagging of the record numbers selectedhth t

andV3, while the list ofC3 consists of a single vector. Cell current node identifier, so as to differentiate them fronordc

numbers referring to other nodes. Scanningatfigeis inter- Algorithm 1 k-NN.Search

rupted if the approximation of the cell where the query vecto Input: %: Number of nearest neighbors
belongs is encountered (lirieAlg. 1). This cell is likely to ¢: Query vector

contain the nearest neighbors of the querthus we choose H: Heap-like container of intermediate results
to temporarily interrupt the approximations scanning artd p - »: Node whose approximations to scan

ceed with examining the relevant data vectors by issuindl a caOutput: H: Heap-like container of results

to Alg. 2. After this interruption, we cancel the scanning of 1: for va € { approximations ira-file of n} do
the rest of the approximations in tlaefile if we are certain ~ 2: if va.low(q) < kth_elementf, k).upthen

that there are no data vectors closer than the ones gathered s: recno := position oba in a-file of n
far. We perform this check by first making sure that we have 4: H. insert(recnopa.up(g), va.low(g), id of)
gathered at least results and comparing) the distance of 5 H := trim_down(H, k)

6: if va.low(g)= 0 then

the query vector to closest border of the enclosing cellresgai > -~
b) the upper distance of the thus far k-th nearest neighbor to;: H '__l('N'\L Da_lta.stcan(c,_ g, H,m) tization of
the query vector. During the second phase (Alg. 2), the cor-- gva -~ approximate; using quantization

: . . . 9: if closestborder , q) > kth_element{, k).upthen
responding records are retrieved from tHée, starting from Al K-NN we?:%sqiéeqva cell.*/ U, k).up

the ones with the most potential to be closer to the query vec;;. return H
tor ¢. If a pointer to a child node is found, a call to Alg. 1is 1. end if
issued, using the child node as the starting query node anews: end if

When the Alg. 1 endsi contains the data vectors that form 14: end if

the results of the query. 15: end for

16: H :=k-NN. Datascang, q, H, n)

H holds two types of elementsa) pairs of the form
17: return H

(recno, node-iji whererecnois the identifier of a potentially
matching record antl) data vectors. For all elements, an up-
per and a lower distance bound from the query vegtare
maintained. For each matching approximation found in the
a-file, the upper and lower distance bounds from the query = =))) o
vectorq are computed and passed along with the corresponés-tat'sucs in conj_unct_lon with numerous heurlstlcs_are com
ing record number to the containgf (line 4 of Alg. 1). For ~ Monly used to pinpoint “hot” areas [3, 7, 8]. But indexing

a data vector, the upper and lower distance bounds coincidganularity also largely depends on the needs of the appli-
with the distance of the vector itself from cation and can be affected by the characteristics of the un-

. _ . derlying hardware. This suggests that index granularity an
The elements if{ are kept in ascending order based on houl - | -
their upper distance. The upper distance bound oft structure should not be determined only by examining data or

: L ; uery distributions. We allow the application to desigrete
element is maintained and cached as a number of |mporta§t y Pp g

dit d d on thi | A | t wh | uitable index expansion policy as well as to choose the ap-
conaitions depend on this value. Any element whose lowe opriate timing for triggering the index adaption. Pa@&i

distance bound is less than or equal to the upper distance E;sentially designate thH&VA structure changes that should
the k-th elem_ent can be, or lead to, data vectors_, among B ccur to improve performance. In case of a new node ad-
Eor;\etZirr?eS:}In?r:?Jrs]?(s);?i.sfyl]Euxs’ a;any moment, all items in th8ition, the policy should provide: a) suggestions regaydin
pr. L. which space cells should be further indexed (“hot” space ar-
eas), b) the per-dimension quantization step to be used in a
lower bound(x) < upper_bound(xy),Ye € H (1) newly created nodeDiVA places all vectors that fall within
the same cell in the same record list since they all produze th

Additionally, any item encountered that satisfies Expr.sl, i S&me approximation. Therefore, the data vectors that will b

inserted inH (lines5 Alg. 1 & line 18 Alg. 2). Note that, at indexed with finer granularity are all part of a single list of

any moment, more thahelements may exist ifif. records. . . o
As the algorithm progresses, element insertion and re- In what follows we present a policy that tries to minimize

moval may cause theeth element inff to change, leading to _the wall_—time incurred in the evaluation of querie; and itssu
the gradual decrease of the upper distance bound of-the " drastically reduced overall I/Q overhead. _Thls _allows us
element. Consequently, a number of elements, that no Iongg? compare the performance DiiVA to other indexing ap-
satisfy Expr. 1 must be dropped frofh. We refer to the pro- proaches in terms of /0.

cess of dropping these elements asttira downoperation. Identifying “hot” spots: This policy computes a score for
Overall, Alg. 1 and Alg. 2 aim to minimize the number of each list of records that may be indexed in finer granularity.
record reads by visiting as early as possible, the areasrclosThe record-list with the highest score is selected for expan
to the query vectog. sion. The score function evaluated for all candidate record

3. ADAPTATION MECHANISM

Algorithm 2 k-NN. Data.scan expended for scanning through the approximations that will

Input: k: Number of nearest neighbors be created an®roj_Readss the expected delays in reading
q: Query vector the records of the new node.
H: Heap-like container of intermediate results The time required for scanning the approximations
n: Node whose records to scan Approxis proportional to the number of new approximations
Output: H: Heap-like container of results because during aa-file scan all the approximations are typ-
1: O := entries ofH with id equal to that of ically examined. Under the assumption that in the new node
2: while O # () do each data vector will have a corresponding approximation,
3. (recno, low,up) := element inO with minimum recno this number can be estimated. Eg. 5 shows the expected de-
4: remove fromH entry identified by recno and id of lays entailed in accessing and manipulating the approxima-
5. rec:=record inr-file of n at position recno tions.
6: if recis part of a data vector lishen
7 d:= dipst(q, vector inrec) Approx=s x i)
8 if d < kth_element{, k).upthen Proj_Readss an estimate of the per query delay cost en-
9: H.insert(rec.vectow) tailed in accessing the data vectors of the new node. The ex-
10: end if . _ _ pected reads consist of) the data vectors that will be part
1 mext .= position of the next record in the data listiafc of the results (as estimated from previous query evalustion
12: if next > recno then o .
13 H insertqext, up, low, n.id) h) andb) some add_monal vectors tha_t will be_read but not
14: end if match the query (misses), denotednasn Equation 6. The
15: elseif rec points to child node with higher index granularity non-matching vectorsif) are estimated as follows: the hits of
then each query are assumed to be insidewadimensional cube.
16: H :=k-NN.Searchk, g, H, rec.child) Any time a new node appears, it partitions the sub-space con-
17: endif taining thisn-cube in finer grained cells. The extra ele-
18: H :=trim_down(H, k) ments read but dropped from the results are expected to be in
19: O := entries ofH with id equal to that of. cells that intersect with the surface of thecube. Consider-
20: end while ing the above, the per query expected time cost for reading
21: return H records is:
Proj_.Reads= R(h + m)/qs (6)
lists is: At this point and under the uniform distribution assump-
Score= Current — Future) tion, we can estimate the density of data vectors within

o each cell asD = [/2VaDitS whereva bits s the bit length of
TheScoreis estimated through a projection of the future costeach approximation in the new node.

(Future) and the current processing cos@ufren) entailed Let B be the number of cells that intersect with the sur-
in the operations performed within the record list examined face of then-cube enclosing the results. On average, we ex-
While operational, theDiVA measures the average time pect only half the volume of thes® cells to reside within the

R required to access and process a single record. Similarly,cype. ConsequentxL vectors residing in the aforemen-

the average time expended in dealing with a single approx-tioned 3 cells will not match the query. So, Eq. 6 becomes:
imation is also obtained. These two statistics capture/tbe |

and processing time required by the current hardware and Proj_.Reads= R(h/qs + B x D/2) @
software environment. The initialization costneeded by
the computer system for opening files hostibg§/A nodes The edgee of the n-cube, can be expressed in terms of

is also gathered. Three extra statisticg; andgs, are main- cells if we consider the-cube’s volumé/ to be proportional
tained on a per-record-list basis. A list containimgcordsis to the number of hits per query:
scanned during the evaluation @f queries. The total num-
ber of records of the list at hand that were part of the result i V=e"=h/(gs xD)=e= /h/(gs x D) (8)
thoseg, queries is denoted ds(hits).

Using the above statistics, the current list-scan costlfor aUsing e, we are able to estimatB, since B is essentially

queriesy, is: equal to the surface of the-cube:
Current= ¢, RI 3) L
n— n=1
The estimation of the total future cost is more complex: B =2ne""t = 2”(qw D) " 9)
Future = ¢,(o + Approx+ Proj_Read$ (4)

With the help of Eq. 3, 4, 5, 7, 9 the score function in Eq. 2 is
whereo indicates the average delays of initializing internalcomputed for each vector list; the one with the overall higghe
structures for accessing a nodgproxis the expected time score is selected for further indexing.

Setting the quantization step: As soon as the highest scor- Volume of vectors: the volume of data affects indexes based
ing record list is identified the policy determines the per-on sequential searci2iVA does combine features from both
dimension quantization step. The number of bits to be usesequential search and tree-based access methods. Dusing th
for the approximations of the new node are dynamically seevaluation, we increase the amount of indexed data in such a
according to the standard deviation and dimensionalitheft way that the proportion between clustered and uniformly dis
data being indexed. More bits are used for high dimensiondtibuted vectors stays the same. We also keep the number of
spaces with vectors displaying low deviation. The bit aloc clusters in space fixed. Figure 2(b) shows the 1/O load for
tion among dimensions follows a heuristic proposed in quaneach index in this evaluation scenario. Thank to their hier-
tization theory that is also used in [5]. More bits are asstgn archical structure, botbiVA and theA-tree are able to skip
to dimensions over which data have greater variance so as &xamining large volumes of data. Hence, they are less af-
maximize the efficiency of the quantized approximations. fected by increase in data volumes, compared toviidile
based indexes.

Clustered vectors: VAfile is known to perform well when
there are no clustered data [4)iVA on the other hand, em-

i o ploys its hierarchical structure to efficiently index bothi-u

In our evaluation we measure 1/O overhead as this is the Mefg,m and clustered data. Here. we vary the percentage of
ric used to measure the effectiveness of most multidimenye cystered data while keeping the total number of indexed

sional indexing methods. WheaNN queries are involved, yectors fixed ta200,000. Figure 2(c) presents the 1/0 load
we evaluateDiVA against Sequential Scan, tié-file, theA- nerformance of all indexes. As data clustering increases, t

tree and an index we calApfile. VA[file is ourimplementa- il is unable to exploit its approximations and thus, more
tion of the most important features suggested byMRefile, a¢4 vectors have to be examined. The KLT applied by the
namely the Karhunen Loeve Transformations (KLT) and a dyyagile provides an advantage over théfile as the clus-
namic bits-per-dimension allocation scheme. Both theae fe (o jz¢ increases. Under uniformly distributed data, Ahe
tures enhance the effectiveness ofWefile when correlated tree performs better than thé-file but worse thamiVA . As

data vectors are present in the data distribution. Howeyer, mqre data are moved to the clustePiyA extends its perfor-
plying the transformation in the entire data space resalts i ance lead.

approximate query results.

4. EXPERIMENTAL EVALUATION

4.1. Synthetic Data Set 4.2. Image Feature Vectors

We created a synthetic data set and measured the I/O perfdrhe real data set used during evaluation consis&)0f000
mance while varying the following properties) dimension- feature vectors extracted from images using methods simila
ality, b) volume of indexed data anc) percentage of clus- to [10]. The dimensionality of this data set can be adjusted b
tered data vectors. The space we use abdise caseonsists altering the number of extracted features. The vectorilistr

of 200, 000 data vectors featuring2 dimensions. Out of the tion produced clearly favors théA-file. For each data vector
200, 000 vectors50, 000 are uniformly distributed and the rest a unique approximation is created using the 4 most signifi-
are grouped int80 clusters. Members of each cluster follow cant bits from each dimension. In other words, the majority
the Gaussian distribution with = 10°¢. With thiso value we of space cells produced by thé\file contain a single data
seek to produce clusters that will be indexed using a gradwector. Thus, it makes little difference if KLT is used todte
ally increasing quantization step. One tenth of the clgster data correlation by th&Agfile. Yet, as shown in Figure 3,
considered “hot” and is targeted by queries. The query loathere is still room for improvement usinBiVA. We assign
consists ok-NNqueries witht=100. only 2 bits per dimension for the approximations of the root
Dimensionality: we vary dimensionality fromt to 96 and node and then let the adaptation policy refine the indexing
measure howDiVA copes with the curse of dimensionality granularity. DiVA outperforms the/A-file based indexes by

in terms of 1/0 performance (Figure 2(a)). Increasing dimenas much a§4% for a query load consisting efngequeries.
sionality results in larger data vectors, thus the tota sizhe This is because with each new ndb#/A increases the num-
indexed data increases. This trend is common for all indgxinber of approximations read while at the same time reduces the
methods of Figure 2(aDiVA performs grouping of multiple number of read records that contain feature vectors (Fig. 4)
vectors under a single approximation, thus it manages to subue to the fact that approximations are shorter than feature
pass the/Afile performance. With respect to tidetree and vectors and are hierarchically structured, the overhead su
while experimenting with its publicly available implemant tained by introducing more approximations adds drib to

tion [9], we were able to evaluate its performance only up tghe overall I/O overhead. At the same time, the fewer record
56 dimensions. As showiVA exhibits a clear advantage in reads reduce the overall I/O 83%.

the entire range of dimensions tested.

100000 — T T T T T T T

100000

10000 10000

1000 £y 1000

Volume (KBytes)

Volume (KBytes)
=
o
o

100

10

o 10000 E

1000 ¢

Volume (KBytes)

100 H fi 4

0
8 16 24 32 40 48 56 64 72 80 88 96 100

Dimensions

(a) Dimensionality impact oiVA.

150

200

(b) DiVA under increasing index size.

10
10 20 30 40 50 60 70 80 90
Percentage of clustered data vectors

250
Thousands of data vectors

(c) DiVA when clustered data in-
crease.

Fig. 2. Performance evaluation &fiVA, A-tree,VAffile andVA-file using synthetic data sets.

100000 gt T T T T

10000

Volume (KBytes)

1000

100 Lt ! !
42 56 70

Dimensions

Fig. 3. /0O performance o¥/A-file andDiVA on real data set.

1000

Records KXxX=
Approximations sseess

XX A

800 -

XX

X
XXXXX

XS

600

XX
XXX

X

X

7

400 -

Volume (KBytes)

[

200

1 3 5 10 20 30 40 60 80110Max
Nodes

Fig. 4. DiVA's I/O reduced as more nodes added.

5. CONCLUSIONS AND FUTURE WORK

DiVA offers fast navigation to query regions of interest and

the structure of its nodes efficiently handles high-dimenai

vectors. Experimentation with both real and synthetic data

sets shows thaDiVA produces significant improvements

compared to competing methods. Our future work plans in-
clude: a) the use of advanced statistical models in determin-
ing the optimal granularity for node expansion and finally,

b) the deployment oDiVA in parallel and distributed sys-

tems.

6. REFERENCES

[1] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger,e“Th

R*-Tree: An Efficient and Robust Access Method for Points

(2]

(3]

[4]

(5]

[6]

[7]

(8]

9]

(10]

and Rectangles,” iRroc. of the 1990 ACM SIGMORtlantic
City, NJ, May 1990.

N. Katayama and S. Satoh, “The SR-tree: An Index Strctur
for High-Dimensional Nearest Neighbor Queries,”Aroc. of
ACM SIGMOD Tucson, AZ, May 1997, ACM Press.

Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima, “The
A-tree: An Index Structure for High-Dimensional Spaces Us-
ing Relative Approximation,” irProc. of 26th VLDB Conf.
Cairo, Egypt, Sept. 2000, pp. 516-526.

R. Weber, H.-J. Schek, and S. Blott, “A Quantitative Anal
sis and Performance Study for Similarity-Search Methods in
High-Dimensional Spaces,” iRroc. of 24th VLDB ConfSan
Francisco, CA, 1998.

H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and A. El Ab-
badi, “Vector Approximation-based Indexing for Non-umifo
High Dimensional Data Sets,” iroc. of the 9th CIKM Conf.
McLean, VA, 2000, ACM.

T. Barclay, D. Slutz, and J. Gray, “TerraServer: A Splatia
Data Warehouse,” ifProc. of ACM SIGMOD Conf.Dallas,
TX, 2000, pp. 307-318.

S. Berchtold, C. Bohm, H.V. Jagadish, H-P. Kriegel, and
J. Sander, “Independent Quantization: an Index Compnessio
Technique for High-dimensional Data Spaces,Pioc. of the
16th IEEE ICDE 2000.

Guang-Ho Cha and Chin-Wan Chung, “The gc-tree: a high-
dimensional index structure for similarity search in image
databases,"IEEE Transactions on Multimediavol. 4, no. 2,
pp. 235-247, 2002.

Y. Sakurai, “The A-tree: source code release,”
http://www.kecl.ntt.co.jp/csl/sirg/ people/yasushidex.html,
NTT Communication Science Laboratories, Seika, Soraku,
Kyoto, Japan.

Khanh Vu, Kien A. Hua, and Wallapak Tavanapong, “Image
retrieval based on regions of interestEEE Transactions on
Knowledge and Data Engineeringol. 15, no. 4, pp. 1045—
1049, 2003.

