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Abstract 

Scheduling query execution plans is a particularly com- 
plex problem in hierarchical parallel systems, where each 
site consists of a collection of local time-shared (e.g., 
CPU(s) or disk(s)) and space-shared (e.g., memory) re- 
sources and communicates with remote sites by message- 
passing. We develop a general approach to the prob- 
lem, capturing the full complexity of scheduling distributed 
multi-dimensional resource units for all kinds of paral- 
lelism within and across queries and operators. We present 
heuristic algorithms for various forms of the problem, some 
of which are provably near-optimal. Preliminary experi- 
mental results confirm the effectiveness of our approach. 

1 Introduction 
In the shared-nothing [7] and the more general hierarchical (or, 
hybrid) [2] multiprocessor architectures, each site consists of its 
own set of local resources and communicates with other sites only 
by message-passing. Despite the popularity of these architectures, 
the development of effective and efficient query processing and 
optimization techniques to exploit their full potential still remains 
an issue of concern 19,251. 

Prior work has already demonstrated the importance of re- 
source scheduling during parallel query optimization. One of 
the main sources of complexity for the problem is the multi- 
dimension&y of the resource needs of database queries. That is, 
during their executionqueries typically require multiple resources, 
such as memory buffers and CPU and disk bandwidth. This in- 
troduces a range of possibilities for effectively scheduling system 
resources among concurrent query operators, which can substan- 
tially increase the utilization of these resources and reduce the re- 
sponse time of the query. Moreover, system resources can be cat- 
egorized into two radically different classes with respect to their 
mode of usage by query plan operators: 
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l Time-Shared (TS) (or, preemptable) resources (e.g., CPUs, 
disks, network interfaces), that can be sliced between opera- 
tors at very low overhead [9, 111. For such resources, oper- 
ators specify an amount of work (i.e., the effective time for 
which the resource is used) that can be stretched over the op- 
erator’s execution time. 

l Space-Shared (SS) resources (e.g., memory buffers), whose 
time-sharing among operators introduces prohibitively high 
overheads [9]. For such resources, operators typically 
specify rigid capacity requirements that must be satisfied 
throughout their execution. 

Most previous work on parallel query scheduling has ignored the 
multi-dimensional nature of database queries and has concentrated 
on simplified models of ss resources, resulting in unrealistic ap- 
proaches to the problem. Similar limitations exist in previous ef- 
forts within the field of deterministic scheduling theory.’ 

In our earlier work [ll], we have presented a multi- 
dimensional framework for query scheduling in shared-nothing 
parallel systems with only TS resources, dealing with the full va- 
riety of bushy plans and schedules that incorporate independent 
andpipefined forms of inter-operation parallelism as well as intra- 
operation (i.e., partitioned) parallelism. Within this framework, 
we have developed a provably near-optimal list scheduling ap- 
proach for time-sharing system resources among concurrent op- 
erators. 

In this paper, we extend our previous formulation to include 
both TS and ss resources, representing query operator costs as 
pairs of work and demand vectors with one dimension per TS and 
ss resource, respectively. We develop a fast resource schedul- 
ing algorithm for operator pipelines called PIPESCHED that be- 
longs to the class of list scheduling algorithms [ 141. We then ex- 
tend our approach to multiple independent pipelines, using a level- 
based (or, shelf-based) scheduling algorithm [5. 241 that treats 
PIPESCHED as a subroutine within each level. The resulting al- 
gorithm, termed LEVELSCHED, is analytically shown to be near- 
optimal for given degrees of operator parallelism. Furthermore, 
we show that LEVELSCHED can be readily extended to handle the 
operator precedence constraints in a bushy query plan as well as 
on-line task arrivals (e.g., in a dynamic or multi-query execution 
environment). Preliminary experimental results confirm the effec- 
tiveness of our algorithms compared to a lower bound on the op- 
timal solution, showing that our analytical worst-case bounds am 
rather pessimistic compared to the average performance. Finally, 
we discuss the implications of our results for the open problem of 
designing efficient cost models for parallel query optimization [7]. 

’ Due to space constraints, we do not discuss the details of earlier work. 
For an extensive bibliography, the interested reader is referred to the full 
version of the paper [12]. 
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2 Problem Formulation 
2.1 Definitions 

We consider hierarchical parallel systems [2] with identical mUl- 
tiprogmmmed resource sites connected by an interconnection net- 
work. Each site is a collection of d TS resources (e.g., CPU(s), 
disk(s), and network interface(s) or CommUUiCatioU pmCess0r(s)) 

and s ss resources (e.g., memory). Although memory is pmba- 
bly the only ss resource that comes to mind when discussing tra- 
ditional database query operators, often the distinction between TS 
and as resources depends on the needs of a particular appkatiOU. 
For example, the playbackof a digitized video from a disk requites 
a specific fraction of the disk bandwidth throughout its execution. 
Clearly such an operator views the disk as an SS resource although 
traditional databaseoperators view it as a TS resource. For this rea- 
son, we decided to address the scheduling problems for general s 
rather than restricting our discussion to s = 1 (i.e., memory). An 
obvious advantage of this general formulation is that it allows us 
the flexibility to “draw the line” between TS and SS resources at 
any boundary, depending on factors such as application require- 
ments or user view of resources. 

An operator tree [9, 171 is created as a “macro-e.xpansion” of 
an execution plan tree by refining each node into a subtree of phys- 
ical operator nodes, e.g., scan, probe, build (Figure l(a,b)). 
Edges represent the flow of data as well as two forms of timing 
constraints between operators: pipelining (thin edges) and block- 
ing (thick edges). Furthermore, blocking edges occasionally im- 
ply a SS resource dependency, where a parent task must use the 
same SS resources as its children in order to access their results. 
For instance, this is the case with the build operators of Fig- 
ure 1 (b), which must build their hash tables in memory, so that the 
corresponding probe operators, being executed immediately af- 
ter them, find those tables in memory. A query task is a maximal 
subgmph of the operator tree containing only pipelining edges. A 
qmry task tree is created from an operator tree by representing 
query tasks as single nodes (Figure 1 (c)). 

(a) 

Ip 71 

(b) 63 

Figure 1: (a) An execution plan tree. (b) The corresponding oper- 
ator tree. (c) The corresponding query task tree. The thick edges 
in (b) indicate blocking constraints. 

The above trees clarify the definitions of the three forms of 
intraquery parallelism: 

l Partitioned parallelism: A single node of the operator tree 
is executed on a set of sites by appropriately partitioning its 
input data sets. 

l Pipelinedparallelism: The operators of a single node of the 
task tree are executed on a set of sites in a pipelined manner. 

l Independentparallelism: Nodes of the task tree with no path 
between them can be executed in parallel on a set of sites 

independent of each other. For example, in Figure 1, tasks 
Tl-T4 may all be executed in parallel, whereas task TS must 
await the completion of Tl-T4. 

The home of an operator is the set of sites allotted to its exe- 
cution. Each operator is either rooted, if its home is fixed by data 
placement constraints (e.g., scanning a materialized intermediate 
relation or probing a built hash table), orfloafing, if the resource 
scheduler is free to determine its parallehzation. 

2.2 Overview 

A parallel schedule consists of (1) an operator tree and (2) an al- 
location of system resources to operators. Given a query execu- 
tion plan, our goal is to find a parallel schedule with minimal re- 
sponse time. Accounting for both TS and SS resource dimensions, 
our scheduling framework gives rise to interesting tradeoffs with 
respect to the degree of partitioned parallelism. Coarse grain op- 
erator parallelizations [8, 10, 1 l] are desirable since they typically 
result in reduced communication overhead and effective parallel 
executions with respect to TS resource use. On the other hand, 
fine grain operator parallelizations are desirable since they imply 
smaller ss requirements for each clone thus allowing for better 
load balancing opportunities and tighter schedulability conditions. 
A quantification of these tradeoffs and our resolution for them are 
presented in Section 3.1. 

We have devised an algorithm for scheduling bushy execution 
plan trees that consists of the following steps: 

Construct the corresponding operator and task trees, and 
for each operator, determine its individual resource require- 
ments using hardware parameters, DBMS statistics, and con- 
ventional optimizer cost models (e.g., [l&21]). 
For each floating operator, determine the degree of paral- 
lelism based on the TS vs. ss resource tradeoffs discussed 
above (partitioned parallelism). 
Place the tasks corresponding to the leaf nodes of the task 
tree in the ready list L of the scheduler. While L is not empty, 
perform the following steps: 
3.1. Determine a batch of tasks from L that can be exe- 

cuted concurrently and schedule them using a prov- 
ably near-optimal multi-dimensional list scheduling 
heuristic (pipelined and independent parallelism). 

3.2. If there are tasks in the tree whoseexecution is enabled 
after Step 3.1, place them in the ready list L. 

We prove that our approach is near-optimal for scheduling multi- 
ple independent pipelines. Further, it can be readily used to handle 
on-line task arrivals (e.g., in a dynamic or multi-query execution 
environment). 

2.3 Assumptions 

Our approach is based on the following set of assumptions: 
Al. No Time-Sharing Overhead for TS Resources. Follow- 

ing Ganguly et al. [9 1, slicing a preemptable resource among 
multiple operators introduces no additional resource costs. 
Uniform TS Resource Usage. Following Ganguly et al. [9], 
usage of a preemptable resource by an operator is uniformly 
spread over the execution of the operator. 

A2. 

A3. Constant ss Resource Demand. The total ss requirements 
of an operator are constant and independent of its degree of 
parallelism. For example, the total amount of memory re- 
quired by all the clones of a bui Id operator equals the size 
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of a hash table on the build relation. Further, increasing the 
degree of parallelism does not increase the ss demands of 
individual clones. 
Non-increasing Operator Execution Times. For the range 
of parallelism considered, an operator’s execution time is a 
non-increasing function of its degree of parallelism, i.e., al- 
lotting more sites cannot increase its response time. 
Dynamically Repartitioned Pipelined Outputs. The out- 
put of an operator in a pipeline is always repartitioned to 
serve as input to the next one. This is almost always accu- 
rate, e.g., when the join attributes of pipelined joins are dif- 
ferent, the degrees of partitioned parallelism differ, or differ- 
ent declustering schemes must be used for load balancing. 

Quantifying Partitioned Parallelism 
A Resource Usage Model 

Our treatment of TS resource usage is based on the model of pre- 
emptable resources proposed by Ganguly et al. [9], which we 
briefly describe here. The usage of a single resource by an op- 
erator is modeled by two parameters, T and W, where T is the 
elapsed time after which the resource is freed (i.e., the response 
time of the operator) and W is the work measured as the effective 
time for which the resource is used by the operator. Intuitively, the 
resource is kept busy by the operator only W/T of the time. Al- 
though this abstraction can model the true utilization of a system 
resource, it does not allow us to predict exactly when the busy pe- 
riods are. Thus, we make assumption A2 which, in conjunction 
with assumption Al, leads to straightforward quantification of the 
effects of resource sharing [9]. 

In our previous work [ 1 I], we presented a multi-dimensional 
version of the model of Ganguly et al. [9] that can quantify the 
effects of sharing sites with TS resources among query operators. 
We extend that model and describe the usage by an isolated opera- 
tor of a site consisting of d TS resources and s ss resources by the -- 
triple (Tseq, W, V), where: 

l Tseq is the (stand-alone) sequentialexecution time of the op- 
erator, 

l w is a d-dimensional work vector whose components denote 
the work done on individual TS resources, i.e., the effective 
time [9, 111 for which each resource is used by the operator; 
and 

l v is an s-dimensional demand vector whose components de- 
note the SS resource requirements of the operator throughout 
its execution. For notational convenience we assume that the 
dimensions of v are normalized using the corresponding ss 
capacities of a single site. 

This generalized view of a system site is depicted in Figure 2. Our 
model assumes a fixed numbering of system resources for all sites; 
for example, dimensions 1, 2.3, and 4 of w may correspond to 
CPU, disk-l, disk-2, and network interface, respectively. 

Time Tseq is actually a function of the operator’s individual 
resource requirements, i.e., its work vector w (sometimes em- 
phasized by using T”“*(W) instead of TSe*), and the amount of 
overlap that can be achieved between processing at different re- 
sources [ 111. This overlap is a system parameter that depends on 
the hardware and software architecture of the resource sites (e.g., 
buffering architecture for disk I/O) as well as the algorithm im- 
plementing the operator. The operator’s ss resource requirements 

d-dimensional s-dimensional 
open-ended unary capacity 

w (preemptable) v (non-preemptable) 

Figure 2: A site with TS and ss resources (d = 3, s = 2) 

(v) depend primarily on the size of its inputs and the algorithm 
used to implement the operator. On the other hand, the opera- 
tor’s work requirements (w) depend on both of these parameters 
as well as its SS resource allotment V. 

Note that, in this paper, we are adopting a somewhat simplified 
view of the ss resource demands, assuming that components of v 
have fixed values determined by plan parameters. In most real-life 
query execution engines, operator memory requirements are mal- 
leable, in the sense that they are typically specified as a range of 
possible memory allotments. This flexibility adds an extra level 
of difficulty to our scheduling problem. It means that the sched- 
uler also has to select specific ss demand vectors v that minimize -- 
query response time over all possible (W, V) combinations. We 
plan to address this more general problem in our future work. 

3.2 Quantifying the Granularity of Parallel Execution 

As is well known, increasing the parallelism of an operator re- 
duces its execution time until a saturation point is reached, beyond 
which additional parallelism causes a speed-down, due to exces- 
sive communication startup and coordination overhead over too 
many sites [6]. To avoid operating beyond that point, we want to 
ensure that the granules of the parallel execution are sufficiently 
coarse [8, II]. In the presence of SS resources, any scheduling 
method is restricted in its mapping of clones to sites by ss capacity 
constraints, i.e., it is not possible to concurrently execute a set of 
clones at a site if their total ss requirements exceed the site’s ca- 
pacity (in any of the s dimensions). Clearly, coarseoperatorclones 
imply that each clone has ss resource requirements that are rela- 
tively large. This means that, when restricted to coarse grain op- 
erator executions, a scheduling method can be limited in its abil- 
ity to balance the total work across sites. Furthermore, coarse ss 
requests can cause severe fragmentation that may lead to under- 
utilization of system resources. Thus, taking both TS and SS re- 
sources into account gives rise to interesting tradeoffs with respect 
to the granularity of operator clones. Our analytical results in Sec- 
tion 4 clearly demonstrate this effect. 

We view the granularity of a parallel operator op as a function 
of the ratio a and V(op, N), where 

l WP(op) denotes the total amount of work performed during 
the execution of op on a single site, when all its operands 
are locally resident (i.e., zero communication cost); it corre- 
sponds to the processing area [lo] of op and is constant for 
all possible executions of op; 

. WC( op, N) denotes the total communication overhead in- 
curred when the execution of op is partitioned among N 
clones; it corresponds to the communication area of the par- 
titioned execution of op and is a non-decreasing function of 
N; and 
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l V(op, N) denotes the maximum (normalized) ss resource 
requirement of any clone when the execution of op is parti- 
tioned among N clones; it corresponds to the ss grain size of 
the partitioned execution of op and is a non-increasing func- 
tion of N. 

Note that the execution of op with degree of partitioned paral- 
lelism equal to N is feasible only if V(op, N) 5 1; that is, the 
partitioning of op must be sufficiently fine-grain for each clone to 
be able to maintain its ss working set at a site. We only consider 
such “reasonable” parallelizations in the remainder of the paper. 

Definition 3.1 A parallel execution of an operator op with de- 
gree of partitioned parallelism equal to N is &granular if 
V(op, N) < X, where X 5 1. 

The following quantification of coarse grain parallelism extends 
our earlier formulation [ 111. 

Definition 3.2 A parallel execution of an operator op with degree 
of partitioned parallelism equal to N is coarse grain with param- 
ererf (referred to as a CGf execution) if the communication area 
of the execution is no more than f times the processing area of op, 
i.e., W,(OP, N) 5 f Wp(op). 

Definition 3.3 A parallel execution of an operator op with de- 
gree of partitioned parallelism equal to N is X-granular CGf , 
if the communication area of the execution is no more than f’ 
times the processing area of op, i.e., W,(op, N) 5 f’ WP(op), 
where f’ is the minimum value larger than or equal to f such that 
V(OP, W i A. 

The intuition behind this definition is that we may sometimes have 
to compromise our restrictions on communication overhead to en- 
sure that the parallelization is in the X-granular region. This is 
graphically demonstrated in Figure 3. 

/ : 
D ’ * 

N N 

&zi&$ 
degree of 

(a)’ 

~-;“gyg~ 

(b) 

Figure 3: X-granular CGf execution: (a) f = f’, and (b) f < f’. 

3.3 Degree of Partitioned Parallelism 

Assuming zero communication costs, the TS and SS resource re- 
quirements of an operator are described by a d-dimensional work 
vector w and an s-dimensional demand vector ‘i7 whose com- 
ponents can be derived from system parameters and traditional 
optimizer cost models [21]. By definition, the processing area 
of the operator W,(op) is simply the sum of ws components, 
i.e., W,(op) = cf=, W[i]. Similarly, the ss grain size 
V( op, N) can be estimated using traditional optimizer cost mod- 
els and statistics kept in the database catalogs [20]. Finally, we es- 
timate the communication area Wf( op, N) using a simple linear 
model of communication costs that has been adopted in previous 
studies of shared-nothing architectures [ 11,261 and validated on 

the Gamma research prototype [6]. Specifically, if D is the total 
size of the operator’s input and output transferred over the inter- 
connect, then We(op, N) = a N + /3 D, where (Y and p are 
architecture-specific parameters [ 111. 

The following proposition is an immediate consequence of 
Definition 3.3 and our communication cost model. 
Proposition 3.1 The maximum allowable degree of partitioned 
parallelism for a X-granular CGf execution of operator op is de- 
noted by N,,, (op, f, A) and is equal to the expression 

fW,(op) -PO 
cr 

, min{N : V(op, N) 5 X} . 

4 The Scheduling Algorithm 
4.1 Notation and Definitions 

Table 4.1 summarizes the notation used in this section with a brief 
description of its semantics. Detailed definitions of some of these 
parameters are given below. Additional notation will be intro- 
duced when necessary. 

Table 1: Notation 
Parameter 

P 
d 
s 

Bj 
B W 
iv 

,"i'qBf) 

M 
OPi 
Ni 

W’OP, 

vopi 
Tmaz( OP, I Ni) 

Semantics 
Number of system sites 
Number of TS ~-~sources per site 
Number of ss resources per site 
System site (i.e., “bin”) i (i = 1,. . . , P) 
Set of TS work vectors scheduled at B, 
Set of SS demand vectors scheduled at B, 
Execution time for all clones at B, 
Number of operators to he scheduled 
0perator.e.g.. build(i = 1, . . . ,M) 
Degree of partitioned parallelism (number 
of clones) for Opi 

Work vector for Opi (including 
communication costs for N; clones) 
Demand vector for Opi 
Maximum execution time among the Ni 
clones of Opi while alone in system 
Set of (floating) clones to be scheduled 
Set of work (demand) vectors for all 
clones to be scheduled 
Set of volume (time x demand) vectors for 
all clones to he scheduled 
Length of a vector 5 or set of vectors S” 

Vector vop, describes the total (normalized) ss resource re- 
quirements of Opi . The components of vop, are computed using 
architectural parameters and database statistics. Note that these 
components are independent of the degree of partitioned paral- 
lelism Ni. 

Vector wop, describes the total (i.e., processing and commu- 
nication) TS resource requirements of Opi, given its degree of par- 
allelism Ni. Using the notions of communication and processing 
area defined in Section 3, the above is expressed as 

2 wOp;[k] = wp(OPi) + wc(OPi, Ni). 

k=l 

The individual components of rap, are computed using archi- 
tectural parameters and database statistics, as well as the SS allot- 
ment for Opi and our model for communication costs. 
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Given an operator clone with a (stand-alone) execution time of 
T and a ss demand of v, we define the volume vector of the clone 
as the product T .v, i.e., the resource-time product’ for the clone’s 
execution [3]. SW, S”, and ST” are used to denote the set of 
work, demand, and volume vectors (respectively) for the set S of 
all the clones to be scheduled. We use the W, V, and TV super- 
scripts in this manner throughout the paper. 

The length of a n-dimensional vector iT is its maximum 
component. The length of a set S” of n-dimensional vectors 
is the maximum component in the vector sum of all the vec- 
tots in S”. More formally, I@) = maxr<k<,{v[lc]} and -- 
l(S”) = maxt.3-h{&SU t@]}. 

The perfor&znce ratio of a scheduling algorithm is defined as 
the ratio of the response time of the schedule it generates over that 
of the optimal schedule. All the scheduling problems addressed 
in this paper are non-trivial generalizations of traditional muhi- 
processor scheduling [ 141 and, thus, they are clearly h/P-hard. 
Given the intractability of the problems, we develop polynomial 
time heuristics that areprovablynear-optimal, i.e., with a constant 
bound on the performance ratio. 

Since the parallelization of rooted operators is pre-determined, 
our algorithms are only concerned with the scheduling of floating 
operators. Also, for the purposes of this section, the degree of par- 
titioned parallelism for all floating operators is determined based 
on a granularity condition, as shown in Proposition 3.1. In short, 
all algorithms presented in this section assume a pre-processing 
step that places rooted clones at their respective sites and computes 
the degree of coarse grain parallelism for all floating operators. 

4.2 Modeling Parallelism and Resource Sharing 

We present a set of extensions to the (one-dimensional) cost model 
of a traditional DBMS based on the multi-dimensional resource 
model described in Section 3. I. Our extensions account for all 
forms of parallelism and quantify the effects of sharing TS and ss 
resources on the response time of a parallel execution. 

4.2.1 Partitioned and Independent Parallelism 

In partitioned parallelism, the work and demand vectors of an 
operator are partitioned among a collection of independent op- 
erator clones [9]. Each clone executes on a single site and 
works on a portion of the operator’s data. The partition- 
ing of mop, and Top, into work and demand vectors for 
operator clones is determined based on statistical information 
keot in the DBMS cataloes. Given such a oartitionina < 

Fop, and cf:, v’r, = Hopi, a lower bound on the parallel ex- 
ecution time for Opi is the maximum of the sequential execution 
times of its Ni clones; that is, the parallel execution time for OPi 
is greater than or equal to 

T"==(op,,N,)= ma% { Tseg(%)}. 
-_ I 

By our definitions of the TS and SS resource classes, it is ob- 
vious that a set of clones < (WI, VI), . . , (w,, irk) > can be 
executed concurrently at some system site only if Z( c: Vi) _< 1, 

2 The volume of an operator is defined as the product of the amount of 
resource(s) that the operatorreserves during its execution and its execution 
time. 

i.e., their ss requirements do not exceed the capacity of the site. 
We call such clone collections compatible. 
Definition 4.1 Given a collection of M independent operators 
{Opi, i = 1. . . M} and their respective degrees of partitioned 
parallelism {N,, i = 1. . . M}, a schedule is a partitioning of the 
c:, Ni operator clones into a collection of compatible subsets 
s1,. . . , S, followed by a mapping of these subsets to the set of 
available sites. 
The effects of time-sharing the preemptable resources of a site 
among the clones in a compatible subset Si can be quantified as 
follows. Let S,y denote the set of work vectors for all clonesin Si. 
Since all clones are executed concurrently, the execution time for 
the clones in Si is determined by the ability to overlap the process- 
ing of TS resource requests by different clones. Specifically, under 
our model of preemptable resources described in Section 3.1, the 
execution time for all the operator clones in S’i is defined as [ 1 l] 

T(Si) = max 

Thus, if we let S(Bj) denote the collection of compatible subsets 
mapped to site B, under a given schedule SCHED, the execution 
time for B3 is 

Clearly, the response time of SCHED is determined by the longest 
running site; that is, 

TP”‘(SCHED, P) = t$1;1=p{ TS’te(B3) }. 
-- 

4.2.2 Pipelined Parallelism 

Pipelined parallelism introduces a co-scheduling requirement for 
query operators, requiring a collection of clones to execute in 
producer-consumer pairs using fine-grain/lock-step synchroniza- 
tion. The problems with load-balancing a pipelined execution 
have been identified in previous work [ 131. Compared to our 
model of a schedule for partitioned and independent parallelism 
(Definition 4. l), pipelined execution constrains the placement and 
execution of compatible clone subsets to ensure that all the clones 
in a pipe run concurrently - they all start and terminate at the same 
time [16]. This means that it is no longer possible to schedule re- 
sources at one site independent of the others, as we suggested in 
the previous section. Compatible subsets containing clones from 
the same pipeline must run concurrently. Furthermore, given that 
the scheduler is not allowed to modify the query plan, scheduling a 
pipeline is an “all-or-nothing” affair: either all clones will execute 
in parallel or none will. The implications of pipelined parallelism 
for our scheduling problem will be studied further in Section 4.4 
where a near-optimal solution will be developed. 

4.3 Scheduling Independent Operators 

In this section, we extend our earlier lower bound on the optimal 
parallel execution time of independent operators (i.e., operators 
not in any pipeline) with a new term that accounts for the effect of 
ss resources. We then demonstrate that a heuristic based on Gra- 
ham’s LPT (Largest ProcessingTime) list scheduling method [ 141 
can guarantee near-optimal schedules for such operators. 
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Theorem 4.1 Let {Opi, i = 1,. . . M} be independent oper- 
ators with respective degrees of partitioned parallelism & = 
(N,Nz,..., NM). Let S be the corresponding set of clones 
and define T,,*(S) = maxi=~,...,~{T”aZ(o~~,Ni)}. If 
TP”‘(OPT, P) is the response time of the optimal execution on 
P sites then TP”‘(OPT, P) 2 LB(S, P), where 

LB(S,P) = max T,,=(S) , 9 , q 
1 1 

. 

As with all theoretical results presented here, Theorem 4.1 is stated 
without proof due to space constraints. The details can be found 
in the full version of this paper [ 121. Compared to our earlier re- 
sults [ 111, the lower bound in Theorem 4.1 introduces a third term 
containing I(STv), i.e., the total volume of the parallel execution. 
We will see that this new parameter plays an important role in our 
analytical and experimental results. 

The basic idea of our heuristic scheduling algorithm, termed 
OPSCHED, is to construct the partition of clones into compatible 
subsets incrementally, using a Next-Fit rule [4, 51. Specifically, 
OPSCHED scans the list of clones in non-increasing order of exe- 
cution time. At each step, the clone selectedis placed in the site Bi 
of minimal height T”‘*‘(Bi) (see Equation (1)). This placement 
is done as follows. Let Si,ni denote the topmost compatible sub- 
set in Bi. If the clone can fit in Si,ni without violating SS capacity 
constraints, then add the clone to Si,,i and update TSite(Bi) ac- 
cordingly. Otherwise, set ni = ni + 1, place the clone by itself in 
a new topmost subset Si,ni, and set Tdite(Bi) accordingly. The 
following theorem establishes an absolute performance bound of 
d + 25 + 2 for our heuristic. 
Theorem4.2 Given a set of clones S, OPSCHED runs in time 
0( ISI log IS]) and produces a schedule SCHED with response 
time TPa’(SCHED, P) 5 (d + 2s + 2) . LB(S, P). 

4.4 Scheduling with Pipelining Constraints 

The co-scheduling requirement of pipelined operator execution 
introduces an extra level of complexity that OPSCHED cannot 
address, namely the problem of deciding whether a pipeline is 
scheduhbleon a given number of sites. Given a collection of oper- 
ator clones in a pipeline, the schedulability question poses anhlP- 
hard decision problem that essentially corresponds to the decision 
problem of s-dimensional vector packing [4]. Thus, it is highly 
unlikely that efficient (i.e., polynomial time) necessary and suf- 
ficient conditions for pipeline schedulability exist. Note that no 
such problems were raised in the previous section, since the clones 
were executing independently of each other. 

In this section, we show that X-granularity with X < 1 for all 
operator parallelizations can provide an easily checkable sufficient 
condition for pipeline schedulability3. Once schedulability is en- 
sured, balancing the work of the pipeline across sites to minimize 
its response time still poses an n/P-hard optimization problem. 
We present a polynomial time scheduling algorithm that is within 
a constant multiplicative factor of the response time lower bound 
for schedulable X-granular pipelines. Further, we demonstrate that 
using a level-based approach, our methodology can be extended to 
provide a provably near-optimal solution for multiple independent 
pipelines. Finally, we extend our techniques to handle the data de- 
pendencies in a bushy query plan and on-line task arrivals. 

3 We use the term A-granularpipeline to describe a pipeline in which 
all operator perallelixations ate. A-granuler. 

4.4.1 Scheduling a Single X-granular pipeline 

We present a near-optimal algorithm for scheduling a pipeline C 
consisting of X-granular parallel operators, where X < 1. Let 
SC denote the collection of clones in C and define SF, $, and 
Tmoz(Sc) in the obvious manner. Note that, by our definitions, 
the pipeline C will require ut least I($) sites for its execution 
(otherwise, X would have to be greater than 1). The following 
lemma provides a sufficient condition for schedulability. 

Lemma4.1 The number of sites required to 
schedule a X-granular pipeline C is always less than or equal to 
I($) . s/(1 - X). 

Our heuristic, PIPESCHED, belongs to the family of list schedul- 
ing algorithms [ 141. P~~~S~~~~assumesthat it is given anumber 
of sites PC that is sufficient for the scheduling of C, according to 
the condition of Lemma 4.1. The algorithm considers the clones in 
SC in non-increasing order of their work density ratio R. At 
each step, the clone under consideration is placed in the leas; filled 
(i.e., least work) site that has sufficient ss resources to accommo- -- 
dateit; that is, clone (Wi, Vi) is packedin bin B such that l(BW) 
is minimal among all sites Bj such that 1(Br U {Vi)) 5 1. Tire 
PIPESCHED algorithm is depicted in Figure 4. The following the- 
orem bounds the worst-case performance ratio of our algorithm4. 

Theorem 4.3 Given a X-granular pipeline C, PIPESCHED runs in 
time O(ISc I log ISC I) and produces a schedule SCHED with re- 
sponse time 

F”(SCHED, PC) < [d(l+ -&)+1].max Far(&), g } . 

Algorithm PIPESCHED(C, PC) 
Input: A set of X-granular pipelined operator clones SC and a set 
of PC sites, where PC 1 t($,” (see Lemma 4.1). 
Output: A mapping of the clones to sites that does not violate ss 
resource capacity constraints. 

1. IetL =< (Wr,Vr),... , (WN, v,) > be the list of all 
clones in non-increasing order of R. I 

2. fork=ltoNdo 

2.1. let SBk = {Bj : 2(By U {v,}) < l}, i.e, tbe set of 
bins with sufficient ss resources for the kth clone. 

2.2. let B E SBk be a site such that l(BW) = 
minejEss, {l(B,W)}. 

2.3. place clone (WN,~N) at site B and set 
BW = B u {TN}, B” = B u {&}. 

Figure 4: Algorithm PIPESCHED 

The bound established in Theorem 4.3 clearly captures the 
granularity tradeoffs identified in Section 3. Increasing the de- 
gree of partitioned parallelism decreases both T”“” (SC) and X 

4 Note that the volume term does not come into the expression for the 
performance bound of PIPESCHED. This is because, by definition, all 
the clones in SC must execute in parullel, so I($) 5 PC. Thus, for 

l(S,y) the execution of a single pipeline, pc < Tma5( SC) . !g< _ 
F-=(SC). 
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because of “finer” operator clones, but it also increases the total 
amount of work I(Sr) because of the overhead of parallelism. 
The importance of such work-space tradeoffs for parallel query 
processing and optimization has been stressed in recent work [ 151. 

4.4.2 Scheduling Multiple Independent Pipelines 

The basic observation here is that the PIPESCHED algorithm pre- 
sented in the previous section can be used to schedule any collec- 
tion of independent pipelines as long as schedulability is guaran- 
teed by Lemma 4.1. 

Our algorithm for scheduling multiple independent pipelines 
uses a Next-Fit Decreasing Height (NFDH) policy [5] in conjunc- 
tion with Lemma 4.1 to identify pipelines that can be scheduled to 
execute concurrently on P sites (i.e., in one layer of execution). 
PIPESCHED is then used for determining the execution schedule 
within each layer. The overall algorithm, LEVELSCHED, is for- 
mally outlined in Figure 5. 

Algorithm LEVELSCHED({C~ , . . . , CN}, P) 
Input: A set of &granular operator pipelines {Cl, . . . , CN} and 
a set of P sites. 
Output: A mapping of clones to sites that does not violate SS re- 
source capacity constraints or pipelining dependencies. 

1. Sort the pipelines in non-increasing order of T”‘“‘, i.e., let 
L =< Cl,..., CN >, where Tmaz(Scl) 2 . . . > 
Tmas(ScN). 

2. Partition the list L in k maximal schedulable sublists: 
Ll =< Cl,..., Cs, >, Liz =< Cil+l, . . .,Ci, >V . . . . 
Lk =< ctk--l+l,. . . , C,v > based on Lemma 4.1; that is, 

for all j. 

3. forj= l,...,Icdo 

3.1. call PIPESCHED((UC~~~C), P) 

Figure 5: Algorithm LEVELSCHED 
The following theorem gives an upper bound on the worst-case 

performance ratio of LEVELSCHED. Note that the co-scheduling 
requirement for the clones in a pipe implies that the total volume 
for all the clones in {Cl,. . . , CN} is I(STV) = 2(x: Tr . 

cixs V i?), since any clone in Ci will require its share of ss re- 

sourceiior at least Tcmtaz time. The lower bound in Theorem 4.1 
holds using the above definition of volume. 
Theorem4.4 Given a collection of N independent X-granular 
pipelines comprising a set of clones S, LEVELSCHED runs in 
time 0( N IS] log PlSj) andproducesascheduleSCHED with re- 
sponse time 

Tpor(SCHED, P) 5 [d’(l+ 

It is important to note that, in most cases, the lower bound esti- 
mated in Theorem4.1 will significantly underestimate the optimal 
response time since it assumes that 100% utilization of system m- 
sources is always possible independenrofthe given task fist. Thus, 

the quadratic multiplicative constants in Theorem 4.4 reflect only 
a worst case that is rather far from the average, as our experimental 
results have verified as well. 

4.5 Data Dependencies and On-Line Task Arrivals 

Scheduling arbitrary query task trees must ensure that the blocking 
constraints specified by the tree’s edges are satisfied. The LEV- 
ELSCHED algorithm can be readily extended to handle such con- 
straints by ensuring that the (sorted) ready list of tasks L always 
contains the collection of query tasks that are ready for execution, 
i.e., they are not blocked waiting for the completion of some other 
(descendant) task in the task tree. In addition, as mentioned in 
Section 2, care must be taken to ensure that whenever there is a 
ss resource dependency between parent and children tasks across 
blocking edges, the operators of all such children are co-scheduled 
and those of the parent are treated as rooted and scheduled in the 
immediately following shelf. All this is done by modifying LEV- 
ELSCHED as follows (see Figure 5): 

1. Any sibling pipelines in the task tree with ss resource depen- 
dencies are treated as a unit, i.e., the way individual pipelines 
are treated in LEVELSCHED. For the purposes of this algo- 
rithm, assume that the term ‘pipeline’ is interpreted as such 
a unit. 

2. Initially, the input set of pipelines {Cl, . . . , CN} contains 
exactly the tasks at the leaf nodes of the query task tree. 

3. After Step 3.1, determine the set of tasks C that have been 
enabled (i.e., are no longer blocked) because of the last in- 
vocation of PIPESCHED. If C# 0, then merge the tasks in 
C into the ready list L and go to Step 2. Otherwise, continue 
with the next invocation of PIPESCHED. 

The exact same idea of dynamically updating and partitioning the 
ready list L can be used to handle on-line task arrivals in a dynamic 
or multi-query environment. Basically, newly arriving query tasks 
are immediately merged into L to participate in the partitioning of 
L into schedulable sublists right after the completion of the cur- 
rent execution layer. Thus, our layer-based approach provides a 
uniform scheduling framework for handling intraquery as well as 
inter-query parallelism. 

As we have already indicated in our earlier work [ 1 I], deriv- 
ing performance bounds in the presence of data dependencies is 
a very difficult problem that continues to elude our efforts. The 
difficulty stems from the interdependencies between different ex- 
ecution layers: scheduling decisions made at earlier layers can im- 
pose data placement and operator execution constraints on the lay- 
ers that follow. We leave this problem open for future research. 

5 Experimental Performance Evaluation 
5.1 Experimental Testbed 

We have experimented with the following algorithms: 
l TREESCHED : Level-based scheduling of task trees, observ- 

ing blocking and data placement constraints (Section 4.5). 
l LEVELSCHED : Level-based scheduling of multiple inde- 

pendent query tasks (Section 4.4.2). 
For both scheduling scenarios (task trees, independent tasks), we 
compared the average performance of our scheduling algorithms 
with a lower bound on the response time of the optimal execution 
schedule for the given degrees of partitioned parallelism (deter- 
mined by the granularity parameters X and f). This lower bound 
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for LEVELSCHED follows directly from Theorem 4.1, whereas, 
for TREESCHED, we used the formula: 

TREEBOUND = max{ q , q, T(CP) }, 

where S is the collection of all operator clones in the task tree and 
T(CP) is the total response time of the critical (i.e., most time- 
consuming) path in the task tree. Due to space constraints, we only 
discuss our results for TREESCHED and refer the interested reader 
to the full paper [ 121 for more details. 

Some additional assumptions were made to obtain a specific 
experimental model from the general parallel execution model de- 
scribed in Sections 3 and 4. These are briefly summarized below: 
EAl. No Data or Execution Skew: With the exception of startup 

cost, the TS work and SS demand vectors of an operator are 
distributed perfectly among all sites participating in its exe- 
cution. Startup is added to the work components of only one 
of these sites, the “coordinator” for the parallel execution. 

EA2. Uniform TS Resource Overlapping: The amount of over- 
lap achieved between processing at different TS resources 
at a site can be characterized by a single system-wide pa- 
rameter c E [0, l] for all query operators. This parame- 
ter allows us to express the response time of a work vec- 
tor as a convex combination of the maximum and the sum 
of its components,i.e., Tseq(W) = cmaX~<i<d{W[i]} + 
( 1 - e) cf, 1 W[;] . Small values of c imply <ited overlap, 
whereas values closer to 1 imply a larger degree of overlap. 

EA3. Simple Hash-Join Plan Nodes: The query plan consists 
of hash-join nodes, where the memory demand for each join 
equals the size of the inner relation times a “fudge factor” ac- 
counting for the hash table overhead. Note that although it is 
possible to execute a hash-join with less memory [22], such 
memory limitations complicate the processing of multi-join 
pipelines - since probe operators cannot keep their entire 
data sets (i.e., inner hash tables) in memory, it is no longer 
possible to execute the probe pipeline in one pass. This 
means that intermediate disk I/O has to be performed at one 
or more pipeline stages, essentially modifying the original 
plan with the addition of extra blocking and data dependen- 
cies. As part of our future work, we plan to investigate the ef- 
fects of such memory limitations on our schedulingmethod- 
ology and results. 

Finally, we should note that our implementations incorporated an 
additional optimization to the basic scheme: After the placement 
of a schedulable sublist (Lemma 4.1) of ready pipelines, each re- 
maining ready pipeline was checked (in non-increasing order of 
T “‘,,) for possible inclusion in the current level before starting 
the next execution level. Although this optimization does not help 
improve worst-case performance (since Lemma 4.1 is tight), we 
found that it really helped the average-case performance of the 
heuristics at the cost of a small increase in running time. 

We experimented with tree queries of 10,20,30,40, and 50 
joins. For each query size, twenty query graphs (trees) were ran- 
domly generated and for each graph an execution plan was se- 
lected in a random manner from a bushy plan space. We assumed 
simple key join operations in which the size of the result relation is 
always equal to the size of the largest of the two join operands. We 
used two performance metrics in our study: (1) the average per- 
formance ratio defined as the response time of the schedules pro- 
duced by our heuristics divided by the corresponding lower bound 

and averaged over all queries of the same size; and, (2) the average 
response time of the schedules produced by our heuristics over all 
queries of the same size. Experiments were conducted with vari- 
ous combinations of values for the X, f, and e parameters. Since, 
the effects off and E on scheduler performance were also studied 
in our prior work [ 111, the discussion in this paper mostly concen- 
trates on the new parameter X. (The results presented in the next 
section are indicative of the results obtained for all values off, e.) 

In all experiments, we assumed system nodes consisting of d = 
3 TS resources (one CPU, one disk unit, and one network inter- 
face) and s = 1 SS resource (memory). The work vector com- 
ponents for the CPU and the disk were estimated using the cost 
model equations given by Hsiao et al. [ 181. The communication 
costs were calculated using the model described in Section 3. The 
values of the cost model parameters were obtained from the liter- 
ature [ 18, 10,261 and are. summarized in Table 5.1. 

Table 2: Experiment Parameter Settings 
CotigurationlDB Catalog Parameters ( Value 0 

CPU Cost Parameters 

5.2 Experimental Results 

Figure 6(a) depicts the average performance ratio of TREESCHED 
as a function of system size for 40-join queries and 32MB of mem- 
ory at each site, assuming a coarse-granularity parameter f = 0.6 
and a resource overlap of 50% (i.e., c = 0.5). Note that our algo- 
rithm is consistently within a small constant factor (i.e., less than 
2) of the lower bound on the optimal schedule length. Although 
the distance from the lower bound has certainly increased com- 
pared to our results for only TS resources [ 111, the results clearly 
demonstrate that the worst-case multiplicative factors derived in 
our analytical bounds are overly pessimistic as far as average per- 
formance is concerned. 

Observing Figure 6(a), it appears that TREESCHED performs 
better for larger values of the memory granularity parameter X. 
This is slightly counterintuitive and seems to contradict Sec- 
tion 4.4: “finer” memory requirements should allow our sched- 
ulers to obtain better load balancing and, consequently, better 
schedules. However, although the performance ratio of the algo- 
rithms improves with larger values of X, the actual performance 
(i.e., the response time) of the schedules (shown in Figure 6(b)), 
deteriorates with larger X, as expected. The explanation of this 
phenomenon lies in Figure 7, which shows how the three compo- 
nents of the TREEBOUND lower bound vary with the number of 
sites for our example set of 40-join queries and 16MB of memory 
per site. (We chose a smaller value for memory because it better 
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Figure 7: TREEBOUND components for (a) X = 0.2, and (b) X = 0.8. (f = 0.6,~ = 0.5) 

illustrates the effect of the volume term for our system setting.) In 
particular, for small values of the number of sites P, the dominant 
factor in TREEBOUND is the average volume term ( q). For 
larger values of P (and, consequently, increased system memory), 
TREEBOUND is determined by the average work term (q). 
Eventually, as P continues to grow, the critical path term (T(CP)) 
starts dominating the other two terms in the bound. Also, note 
that as the critical path becomes the dominant factor in the query 
plan execution, our level-based methods become more accurate 
in approximating the lower bound. Intuitively, this is because the 
“height” of each execution level as determined by the plan’s criti- 
cal path will be sufficient to pack the work in that level and, thus, 
the resource loss due to “shelving” is not important. (This also ex- 
plains why the average performance ratios for various values of X 
all converge to a value close to 1 as the number of sites increases.) 
For the parameter settings in our experiments, larger values for 
the memory granularity X typically imply lower degrees of par- 
allelism for the operators in the plan, which means that the critical 
path will start dominating the other two factors in TREEBOUND 
much sooner. Furthermore, the aforementioned effect on the per- 
formance ratio becomes more pronounced since the critical path 
term will be significantly larger for larger X (Figure 7). Conse- 
quently, larger values for X imply better performance ratios, al- 
though the actual schedule response times are worse. 

6 Parallel Query Optimization 
Perhaps the major difference between parallel query optimization 
and its well-understood centralized counterpart lies in the choice 

of response time as a more appropriate optimization metric. This 
choice of metric implies that a parallel query optimizer cannot af- 
ford to ignore resource scheduling during the optimization pro- 
cess. Prior work has demonstrated that a hvo-phase approach [I 71 
using the traditional work (i.e., resource consumption) metric dur- 
ing the plan generation phase often results in plans that are in- 
herently sequential and, consequently, unable to exploit the avail- 
able parallelism [ 11. On the other hand, using a detailed resource 
scheduling model during plan generation (as advocated by the 
one-phase approach [ 19,231) can have a tremendous impact on 
optimizer complexity and optimization cost. For example, a Dy- 
namic Programming (DP) algorithm must use much stricter prun- 
ing criteria that account for the use of system resources [9, 191. 
This leads to a combinatorial explosion in the state that must be 
maintained while building the DP tree, rendering the algorithm 
impractical even for small query sizes. 

The role of the optimizer cost model is to provide an abstrac- 
tion of the underlying execution system. In this respect, the one- 
and two-phase approaches he at the two different ends of a spec- 
trum, incorporating either detailed knowledge (one-phase) or no 
knowledge (two-phase) of the parallel environment in the opti- 
mizer cost metric. The goal is to devise cost metrics that are more 
realistic than resource consumption, in the sense that they are cog- 
nizant of the available parallelism, and at the same time are suffi- 
ciently efficient to keep the optimization process tractable. In re- 
cent work, Ganguly et al. [8] suggested the use of a novel scalar 
cost metric for parallel query optimization. Their metric was de- 
fined as the maximum of two “bulk parameters” of a parallel query 
plan, namely the critical path length of the plan tree and the aver- 
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age work per site. Although the model used in the work of Gan- 
guly et al. was one-dimensional, it is clear that the “critical path 
length” corresponds to the maximum sum of TmaP’s in the task 
tree (over all root-to-leaf paths), whereas the “average work” cor- 
responds to q with S be mg all operator clones in the plan. 

Based on our analytical and experimental results, there clearly 
exists a third parameter, namely the average volume per site 

q that is an essential component of query plan quality. The 
importance of this third parameter stems from the fact that it is the 
only one capturing the constraints on parallel execution that derive 
from SS (i.e., memory) resources. 

We believe that the triple (critical path, averuge work, uver- 
age volume) captures all the crucial aspects characterizing the ex- 
pected response time of a parallel query execution plan. Conse- 
quently, we feel that these three components can provide the basis 
for an efficient and accurate cost model for parallel query optimiz- 
ers. Finally, note that although Ganguly et al. [8] suggested com- 
bining the plan parameters through a max{} function to produce a 
scalar metric, the way these parameters are used should depend on 
the optimization strategy. For example, a DP-based parallel opti- 
mizer should use our three “bulk parameters” as a 3dimensional 
vector and use a S-dimensional “less than” to prune the search 
space [9]. Clearly, using only three dimensions turns the Partial 
Order DP (PODP) approach of Ganguly et al. [9] into a feasible 
and efficient paradigm for DP-based parallel query optimization. 

7 Conclusions 
The problem of scheduling complex queries in hierarchical par- 
allel database systems of multiple time-shared and space-shared 
resources has been open for a long time both within the database 
field and the deterministic scheduling theory field. Despite the im- 
portance of such architectures in practice, the difficulties of the 
problem have led researchers in making various assumptions and 
simplifications that are not realistic. In this paper, we have pro- 
vided what we believe is the first comprehensive formal approach 
to the problem. We have established a model of resource usage 
that allows the scheduler to explore the possibilities for concur- 
rent operations sharing both TS and 88 resources and quantify 
the effects of this sharing on the parallel execution time. The 
inclusion of both types of resources has given rise to interest- 
ing tradeoffs with respect to the degree of partitioned parallelism, 
which are nicely exposed within our analytical models and re- 
sults, and for which we have provided some effective resolutions. 
We have provided efficient, near-optimal heuristic algorithms for 
query scheduling in such parallel environments, paying special at- 
tention to various constraints that arise from the existence of 8s 
resources, including the co-scheduling requirements of pipelined 
operator execution, which has been the most challenging to re- 
solve. Our set of results apply to all types of query plans and even 
sets of plans that are either provided all at the beginning or arrive 
dynamically for scheduling. As a side-effect of our effort, we have 
identified an important parameter that captures one aspect of par- 
allel query execution cost, which should play an important role in 
obtaining realistic cost models for parallel query optimization. 
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