
The VLDB Journal (2008) 17:729–764
DOI 10.1007/s00778-006-0036-8

REGULAR PAPER

Supporting the data cube lifecycle: the power of ROLAP

Konstantinos Morfonios · Yannis Ioannidis

Received: 24 August 2005 / Revised: 29 January 2006 / Accepted: 11 July 2006 / Published online: 19 December 2006
© Springer-Verlag 2006

Abstract The lifecycle of a data cube involves effi-
cient construction and storage, fast query answering,
and incremental updating. Existing ROLAP methods
that implement data cubes are weak with respect to one
or more of the above, focusing mainly on construction
and storage. In this paper, we present a comprehensive
ROLAP solution that addresses efficiently all function-
ality in the lifecycle of a cube and can be implemented
easily over existing relational servers. It is a family of
algorithms centered around a purely ROLAP construc-
tion method that provides fast computation of a fully
materialized cube in compressed form, is incrementally
updateable, and exhibits quick query response times that
can be improved by low-cost indexing and caching. This
is demonstrated through comprehensive experiments on
both synthetic and real-world datasets, whose results
have shown great promise for the performance and sca-
lability potential of the proposed techniques, with re-
spect to both the size and dimensionality of the fact
table.

Keywords ROLAP · Data cube · Compressed
storage · Query processing · Incremental updating ·
Indexing · Caching

The project is co-financed within Op. Education by the ESF
(European Social Fund) and National Resources.

K. Morfonios (B) · Y. Ioannidis
Department of Informatics and Telecommunications,
University of Athens, Athens, Greece
e-mail: kmorfo@di.uoa.gr

Y. Ioannidis
e-mail: yannis@di.uoa.gr

1 Introduction

The data cube is one of the most important concepts in
OLAP technology. It consists of the results of group-by
aggregate queries on all possible combinations of the
dimension attributes over a fact table in a data ware-
house. Materialization of summary views on the cube is
critical for improving the response time of OLAP que-
ries and of operators such as roll-up, drill-down, and
pivot.

A common representation of the data cube that illus-
trates the computational dependencies among the differ-
ent group-bys is the cube lattice [9]. Figure 1 presents
cube lattice of a fact table R with three dimensions (A,
B, and C), where a lattice node label is a concatenation
of the corresponding dimension names. If we denote
the number of dimensions of a fact table with D, the
number of all cube lattice nodes is 2D. Hence, a naive
implementation method that computes each node sepa-
rately and simply stores the result has exponential time
and space complexity. To overcome this, a wide range
of methods that provide efficient cube implementation
(with respect to both computation and storage) has been
proposed, which are compatible with either the ROLAP
or the MOLAP architecture. In this paper, we follow the
majority of efforts so far and focus on ROLAP.

Data cube implementation, however, is not an end in
itself. Cubes may be constructed off-line, but their life-
cycle does not stop there. They are used for answering
queries in order to improve response times. Addition-
ally, data in the original fact table changes and data cubes
must follow suit. Reconstructing the entire cube from
scratch periodically is impractical; instead, incremental
update methods must be employed.

730 K. Morfonios, Y. Ioannidis

Fig. 1 Example of a cube lattice

The ideal data cube implementation must address
efficiently all aspects of cube functionality in order to
be viable. Nevertheless, existing ROLAP methods have
only provided partial solutions, focusing mainly on (off-
line) computation and storage, neglecting phases in the
cube lifecycle that are related to its every-day usage and
may, hence, be more important. This has given rise to
several hierarchical data structures that provide efficient
computation, storage, query answering, and updating of
cubes, such as Dwarf [24], which is a highly compressed
data structure that eliminates prefix and suffix redun-
dancies efficiently. The main disadvantage of these ap-
proaches is that they are not ROLAP, i.e., they require
specialized development effort.

Hence, the question that arises is the following: Is the
data cube problem so complex that it cannot be solved
efficiently in its entirety using relational techniques? If
so, the extra effort and cost to implement more sophis-
ticated methods is inevitable. In this paper, we inves-
tigate the power of ROLAP and propose three new
cubing methods [PRT-PC, PRS-PC, and TRS-BUC] that
comply with the relational model. Our experiments on
both synthetic and real-world datasets demonstrate that
TRS-BUC is the best among them and, to a large extent,
dominates in performance all previously existing RO-
LAP techniques on all aspects of the data cube problem,
sometimes by significant margins.

Note that, as a cube construction algorithm alone,
TRS-BUC is similar to existing methods, only further
enhanced with an improved storage scheme that pro-
vides significant reduction in storage space requirements
and sometimes reduces construction time as well. This
is not, however, the main contribution of this paper.
The purpose here is not to propose another construction
algorithm but an entire suite of construction, querying,
and update algorithms that are based on TRS-BUC and
enjoy the benefits of the improved storage scheme that
TRS-BUC generates.

In brief, the greatest advantage of TRS-BUC is that
it replaces a large number of tuples with row-id refer-
ences to tuples in the fact table, thus redirecting many

disk accesses during cube operations to a single relation.
This redirection allows TRS-BUC to benefit from effi-
cient caching and indexing, as the fact table can become
the single point of attention for these optimizations. For
example, with respect to indexing, cubes constructed by
TRS-BUC are amenable to indexing schemes that accel-
erate cube usage overall while consuming only a limited
amount of additional resources. In contrast, in all previ-
ous ROLAP techniques, indexing the cube is equivalent
to indexing every one of its nodes. As we show later,
this generates significant overheads in terms of both
computational complexity and storage space require-
ments, rendering these techniques relatively impractical
for real-world applications. Similar issues arise with re-
spect to caching as well. Hence, the particular storage
format of TRS-BUC provides great advantages to the
entire lifecycle of data cubes.

In particular, our contributions can be summarized as
follows:

– Cube construction: We incorporate redundancy
reduction into the dominant ROLAP cube construc-
tion methods and devise three new cubing algo-
rithms, which exhibit considerable reduction in the
size of the cube to be stored as well as some minor
reduction in its construction time. We study their
behavior under large and multi-dimensional data-
sets and show that TRS-BUC is the first ROLAP
method that scales well up to at least 25 dimensions.

– Query answering: Under a comprehensive query
model, which is broader than the models used in the
past for the same purpose, we evaluate novel algo-
rithms for answering queries on top of the cubes pro-
duced by the new methods and demonstrate that the
cube resulting from TRS-BUC exhibits significantly
better query execution performance compared to
all earlier techniques, including those considered as
“champions” with respect to construction time and
storage space. Furthermore, we prove that the class
of count iceberg queries can be answered using TRS-
BUC as efficiently as on top of an actual iceberg
cube.

– Incremental maintenance: We introduce novel incre-
mental update algorithms and demonstrate that
those based on TRS-BUC exhibit again significantly
better performance compared to their counterparts.
Moreover, they produce a cube identical to the one
that would be produced by full reconstruction, i.e.,
TRS-BUC preserves its compact format unaffected,
regardless of the frequency of updates.

– Indexing and caching: We propose indexing and cach-
ing schemes and study their effect on both query

Supporting the data cube lifecycle: the power of ROLAP 731

answering and incremental updating of ROLAP
cubes. Our experiments show that TRS-BUC is the
only known method that can benefit significantly
from such techniques, consuming inexpensive addi-
tional resources.

Overall, our results give very positive indications on
the power of ROLAP.

The rest of this paper is organized as follows: In
Sects. 2, 3, and 4, we study the problems of cube construc-
tion, query answering, and incremental maintenance,
respectively. In Sect. 5, we study indexing techniques
for ROLAP cubes using traditional B+-Trees and bit-
map indices, again in the context of the entire cube life-
cycle. Finally, in Sect. 6, we present related work and,
in Sect. 7, we conclude and exhibit the directions of our
future work.

2 Cube construction

2.1 Cube redundancy

First Kotsis and McGregor [12] and then several other
researchers have realized that a great portion of the
data in a cube is redundant [5,13,14,24,28]. Remov-
ing it results in a condensed, yet still fully materialized
cube. Existing methods that avoid redundancy achieve
impressive reductions in the size of the cube stored,
which benefit computation performance as well, because
output costs are significantly lower and in some cases,
because early identification of redundant tuples enables
pruning of parts of the computation. Additionally, at
query time, neither aggregation nor decompression
takes place, but only a simple redirection of retrieval
to other nodes in the lattice.

In this paper, we distinguish two notions of redun-
dancy: (a) A tuple in a node is partially redundant when
it can be produced by simple projection of a single tuple
from its parent node in the cube lattice without aggre-
gation. Partially-redundant tuples are generated by the
same set of tuples in the original fact table and have,
therefore, the same aggregate values. Such redundant
tuples are taken into account by other algorithms as
well [5,12–14,24]. (b) A partially-redundant tuple in a
node is further characterized as totally redundant when
it can be produced by projection of a single tuple from
any ancestor node all the way up to the original fact
table without aggregation. The concept has also been
identified by earlier efforts as well; for example, totally-
redundant tuples coincide with those called Base Single

Fig. 2 Fact table R

Fig. 3 Cube of R

Tuples in BU-BST [28]. Both notions of redundancy are
better explained with the example below.

Example: Assume a fact table R consisting of three
dimensions (A, B, C) and one measure M (Fig. 2). Fig-
ure 3 presents the corresponding cube. Tuple 〈2, 20〉 in
cube node A is totally redundant, since it can be pro-
duced by a simple projection of tuple 〈2, 3, 1, 20〉 in R.
The black arrows in Fig. 3 point at several tuples in an
entire subcube where the same information with respect
to A is repeated. Note that A = 2 “functionally deter-
mines” the values in all other fields, thus the correspond-
ing tuple is redundant in all nodes containing dimension
A. Similarly, tuple 〈3, 60〉 in C can be evaluated from a
simple projection of tuple 〈1, 3, 60〉 in its parent node AC
(white arrows in Fig. 3). However, C = 3 does not “func-
tionally determine” the values in all the other fields,
hence, tuple 〈3, 60〉 is partially but not totally redundant.

Note that the notion of a partially-redundant tuple
denotes a relationship between the tuple’s node and its
parent only. No conclusions can be drawn about other
ancestor nodes in higher lattice levels. On the contrary,
the definition of a totally-redundant tuple implies (by
induction) that it is totally redundant in all of its ances-
tors up to the lattice root and is also found in the origi-
nal fact table. Hence, bottom–up computation methods
are efficient mainly in discovering totally-redundant tu-
ples, since they can construct each node from the fact
table, while top–down methods can exploit all partial

732 K. Morfonios, Y. Ioannidis

redundancy, since they use parent–child relationships.
Our methods avoid such redundancies, as described be-
low.

2.2 Suite of algorithms investigated

According to published comparisons, the most efficient
methods in the ROLAP context that construct full and
uncompressed cubes are Partitioned-Cube (PC) [21]
and BottomUpCube (BUC) [2], which compute the cube
by traversing the cube lattice in a top–down and a bot-
tom–up manner, respectively. They both apply recursive
partitioning on the original data until each generated
segment fits in main memory, making effective use of
resources and providing robustness and reasonable
scaling.

Inspired by the discussion in Sect. 2.1, we combine
the “champions” in cube computation PC and BUC with
redundancy reduction and derive three new cubing algo-
rithms: PRT-PC, PRS-PC, and TRS-BUC. The first two
are derivatives of (top–down) PC and exploit all par-
tial redundancy, while the third one is a derivative of
(bottom–up) BUC and exploits total redundancy.

We also examine two earlier ROLAP techniques that
exploit redundancy: BU-BST [28] and QC-DFS [13].
They are both similar to TRS-BUC, in that they are
recursive algorithms based on BUC that take advantage
of total redundancy (QC-DFS deals, in fact, with all par-
tial redundancy and more). As explained in Sect. 2.5,
however, they both differ from TRS-BUC in some as-
pects that prove crucial for performance overall.

2.3 Algorithms PRT-PC and PRS-PC

Partially-Redundant-Tuple-PC (PRT-PC) and Partially-
Redundant-Segment-PC (PRS-PC) are two cubing
methods that combine the efficiency of PC [21] with
redundancy reduction. PC follows a divide-and-conquer
strategy when the input fact table does not fit in memory:
at appropriate points of its execution, it uses an efficient
hash-based method to recursively partition the fact ta-
ble into fragments that fit in main memory and performs
sorting and aggregation on each memory-sized fragment
independently. The hash-based method guarantees that
all tuples that need to be aggregated together, i.e., tu-
ples with the same values in the dimensions that are pro-
cessed at that point, are assigned into the same partition.
Similarly to all cubing approaches presented in the lit-
erature, PC makes the realistic assumption that no such
group of tuples is so big that it cannot fit in memory.
This implies essentially that there is no single value in
any dimension that has more tuples associated with it
than what fits in memory. For each memory-sized par-

tition InRel, algorithm Memory-Cube is called (Algo-
rithm 1 without the gray lines), which is the heart of
PC and performs aggregation. Memory-Cube computes
an entire subcube inside main memory, using pipelining
to construct entire lattice paths of nodes that share a
common prefix. In this way, it shares sorting costs and
minimizes computational penalties.

Our modifications to the original Memory-Cube algo-
rithm, denoted with gray color in Algorithm 1, are based
on the observation that identification of partially-
redundant tuples can be easily incorporated into it at
almost no extra cost. In particular, Memory-Cube takes
a prefix-ordered path and sorts the in-memory relation
segment InRel according to the attribute ordering of
the first node of the path (line 1). It then makes a sin-
gle scan through the data (starting at line 9), storing
into accumulator variables aggregates at all granulari-
ties found on the path (starting at line 18). Aggregates
at finer granularities are combined with those at coarser
granularities (line 26) when the corresponding grouping
attributes change (tested in line 19). Results are out-
put immediately with no check for redundancy (in the
original algorithm, instead of lines 21–25, a single call to
Flush(Accumulators[i]) exists), so this is the part where
we have intervened. After sorting the tuples (line 1) and
starting the pipelined computation of an entire lattice
path (line 3), we identify tuples that propagate from
parent to child without being aggregated. If such a tu-
ple does not match the tuple in the current accumulator
(line 19), the accumulator is flushed to disk (lines 22, 24)
and the propagated tuple enters the empty accumula-
tor (line 26). In this case, flag isAggregated is set to false
(line 27). Otherwise, the matching tuples are aggregated
(line 30) and flag isAggregated is set to true (line 31).
Note that an aggregated tuple is flushed to disk indeed
according to the conventional algorithm (line 22), but
its row-id is kept to be used as a reference if the tuple is
found redundant in descendant nodes. On the contrary,
non-aggregated tuples are partially redundant and can
be immediately sidelined (line 24) and substituted by
references to the ancestor node where the original tu-
ple is actually stored; this is the reason why we keep
track of each tuple’s AnscestorRef (lines 17, 22). These
references can be implemented using row-ids, in purely
relational fashion. (In this paper, we assume that the
underlying system supports row-ids, which is common
in practice. Otherwise, an additional integer column in
the fact table would be required, which would hold a
unique number for every tuple, e.g., taken from a se-
quencial number generator, playing the role of a row
identifier. We do not study this alternative any further.)

Figure 4 shows the PRT-PC cube (the cube
constructed by PRT-PC) of R (Fig. 2). To facilitate under-

Supporting the data cube lifecycle: the power of ROLAP 733

Algorithm 1 PRT/PRS-PcMemoryCube(InRel, GroupingAttrs)
1: Sort(InRel);
2: CombineTuplesSharingAllValues(InRel, GroupingAttrs);
3: for each sort order SO do
4: InitializeAccumulators(Accumulators);
5: t = GetFirstTuple(InRel);
6: Combine(t, Accumulators[0]);
7: previous_t = t;
8: startSortingFrom_t = t;
9: for each subsequent tuple t in InRel do

10: j = FindFirstDifferentSortOrderAttribute(t, previous_t);
11: if j < GetCommonPrefixSize(SO, NextSOrder(SO)) then
12: SortSegment(InRel, startSortingFrom_t, previous_t, NextSOrder(SO));
13: startSortingFrom_t = t;
14: end if
15: if HasDiffInGroupingAttr(t, Accumulators[0]) then
16: propagated_t = Accumulators[0]; {Propagate this tuple to the next level}
17: propagated_t.AnscestorRef = Flush(Accumulators[0]); {Keep tuple’s row-id}
18: for each subsequent Accumulators[i] do {For all descendants in the lattice path}
19: if HasDiffInGroupingAttr(propagated_t, Accumulators[i]) then
20: current_t = Accumulators[i];
21: if Accumulators[i].isAggregated then {Flush a “normal” tuple to disk and keep its row-id to use as a

reference if it is found partially redundant in descendant nodes}
22: current_t.AnscestorRef = Flush(Accumulators[i]);
23: else {Redundant tuple found. Flush its ancestor’s rowid (AnscestorRef)}
24: FlushRedundant(Accumulators[i]);
25: end if
26: Combine(propagated_t, Accumulators[i]); {Accumulator has been flushed and a new tuple is added}
27: Accumulators[i].isAggregated = false;
28: propagated_t = current_t; {Propagate current t to the next level}
29: else
30: Combine(propagated_t, Accumulators[i]);
31: Accumulators[i].isAggregated = true; {Aggregation took place}
32: breakLoop; {Break tuple propagation}
33: end if
34: end for
35: end if
36: Combine(t, Accumulators[0]);
37: previous_t = t;
38: end for
39: FinalizeAccumulators(Accumulators);
40: end for

Fig. 4 The PRT-PC cube of R

standing of this figure and the underlying algorithm,
Fig. 6 describes the construction steps according to PRT-
PC assuming that the entire fact table fits in one parti-

tion. In the description of the algorithm’s actions, acc-
X stands for accumulator X. In Fig. 4, note the large
number of partially-redundant tuples that have been re-
placed by mere row-id references, depicted as arrows
pointing to tuples in ancestor nodes. These references
are actually stored in different tables (to preserve
relational compatibility), but we show them within the
normal views for simplicity. Note also that, for the con-
struction of this cube, three paths are traversed (in accor-
dance with the original PC algorithm): ABC → AB →
A → Ø, CA → C, and BC → B. Figure 6 illustrates the
construction of all tuples in the first path only. The rest
is similar and, thus, omitted. Finally, note that the root
node of each path has no parent, thus nodes ABC, AC,
and BC include no references in Fig. 4.

PRS-PC extends PRT-PC, identifying subsets of con-
secutive partially-redundant tuples, called partially-

734 K. Morfonios, Y. Ioannidis

Fig. 5 The PRS-PC cube of R

redundant segments. By grouping such tuples into a
segment (performed in FlushRedundant, line 24), PRS-
PC substitutes several row-id references with a single
one (pointing to the first tuple of the segment) and a
count (denoting the segment size), thus achieving
greater compactness at no extra cost. Figure 5 presents
the PRS-PC cube of R. The extension of PRT-PC to
PRS-PC is straightforward; hence we omit a detailed
illustration of the algorithm like the one in Fig. 6.

We should note that there are aggregate functions
that are not amenable to such processing. In general,
three types of aggregate functions are recognized [6]:

distributive (e.g., count, sum, min, max), algebraic (e.g.,
avg), and holistic (e.g., median). Aggregates at higher
lattice levels can be used to compute aggregates at lower
levels only for distributive and algebraic functions. Like
PC, PRT/PRS-PC take advantage of aggregates already
computed, hence, they can evaluate distributive and
algebraic functions, but not holistic ones.

2.4 Algorithm TRS-BUC

Totally-Redundant-Segment-BUC (TRS-BUC) com-
bines BUC [2] with elimination of totally-redundant seg-
ments (subsets of consecutive totally-redundant tuples)
in the same spirit as BU-BST [28]. Our modifications
to the original BUC algorithm are once more denoted
with gray color in Algorithm 2. Similarly to all other
BUC-based methods presented in the next subsection,
TRS-BUC proceeds recursively from the bottom of the
lattice and works its way up towards the larger, less
aggregated nodes, in a depth-first manner.

Initially, a main function partitions the original fact
table into pieces that fit in main memory (using a hash-
based method that is similar to the one used by PC,
as explained in the previous subsection), and then, for
each partition InRel, it calls TRS-BUC (Algorithm 2)
with input parameters InRel and dim = 0. In the first step,
TRS-BUC aggregates all measures of the entire InRel

Step Action Memory Image Disk Image

1

Load fact table into main memory.
Start with path ABC→AB→A→Ø
and initialize four accumulators (one
for each node in the path). The size of
each accumulator is equal to the size
of a tuple that belongs to the corre-
sponding node. For each accumulator
keep the following meta-data: an an-
cestor reference AnscestorRef (consist-
ing of the node name and a row-id)
and a flag isAggregated indicating if
the tuple has been aggregated in the
accumulator. The initial values of the
meta-data indicate that the accumula-
tors are empty.

2 Sort R according to the root node in
the current path, i.e., ABC.

3

Start scanning R. Since acc-ABC is
empty, just insert the first tuple of R
into it and update its meta-data. The
value <ABC, 1, F> of the meta-data
indicates that the tuple under con-
struction in the corresponding accu-
mulator is the 1st generated for node
ABC and has not been aggregated
(hence, isAggregated is equal to F, i.e.,
false).

Fig. 6 a Steps 1–3 of PRT-PC applied on R

Supporting the data cube lifecycle: the power of ROLAP 735

Step Action Memory Image Disk Image

4

Continue with the second tuple of R.
Compare its dimension values with the
ones of acc-ABC. Since they differ, (a)
flush acc-ABC to disk, (b) propagate
the relevant part of its contents to
acc-AB, and (c) insert the second
tuple into acc-ABC and update its
meta-data.

Although not aggregated, the flushed
tuple is stored as normal because ABC
is the root of the path, as explained in
the text. The same holds for all the
tuples stored in node ABC in steps 5,
6, and 7.

Since acc-AB was empty, the propa-
gated values from acc-ABC are not
propagated any further. The meta-
data of acc-AB (<ABC, 1, F>) indi-
cate that the corresponding tuple (<1,
1, 50>) can be produced by a simple
projection of the first normal tuple of
node ABC, since it has not been aggre-
gated in AB, at least up to now.

5

Continue with the third tuple of R.
Again, since its dimension values
differ from those of acc-ABC, (a) flush
acc-ABC to disk, (b) propagate the
relevant part of its contents to acc-AB,
and (c) insert the third tuple into
acc-ABC and update its meta-data.

Compare the dimension values prop-
agated from acc-ABC to acc-AB
with those already in AB. Since they
differ, repeat the process of flushing
the latter to disk, propagating the
relevant part of its contents to acc-A,
and inserting the propagated contents
of acc-ABC into AB. (The flushed
tuple is stored as a reference to the
1st tuple of node ABC, as indicated
by the corresponding accumulator
meta-data <ABC, 1, F> in step 4.)

Again, since acc-A was empty, the
propagated values from acc-AB are not
propagated any further.

6

Continue with the fourth tuple of R in
identical fashion, flushing and propa-
gating again until acc-A. This time, the
dimension values propagated from acc-
AB are equal with those already in A
(A=1 in both). Hence, perform aggre-
gation, update acc-A, and do not prop-
agate to acc-Ø. Note that the meta-
data associated with acc-A (<A, 1,
T>) indicate that tuple <1, 60> is the
1st normal tuple that has been aggre-
gated in node A. Hence, this time is-
Aggregated is set to T (true).

Fig. 6 b Steps 4–6 of PRT-PC applied on R

into a single tuple t (line 1). If t is totally redundant (i.e.,
generated from a single tuple in InRel, tested in line
2), TRS-BUC stores it only into the currently processed
node CurrentNode (lines 3–16) and prunes recursion
early (line 17). Note that the original BUC algorithm
applies a similar optimization technique as well when
identifying a cube tuple t generated from a single fact-
table tuple. The main difference is in that BUC also
projects t and stores it into all the ancestor nodes of
CurrentNode in the cube lattice (since, in BUC, instead
of lines 3–16, a single call to a function called WriteAns-
cestors exists). Hence, although BUC achieves early
pruning of recursive calls as well, it physically stores
projections of the same cube tuple into multiple nodes,

which is redundant. TRS-BUC not only overcomes this
drawback, but it further compresses the final result by
grouping subsets of totally-redundant tuples generated
by consecutive fact-table tuples into segments. (Recall
that PRS-PC applies similar techniques for identifying
partially-redundant segments.) To achieve this, TRS-
BUC keeps some additional information for each lat-
tice node it processes: (a) The first tuple of the fact table
that belongs to the most recently found redundant seg-
ment RS (CurrentNode.frstRdntTpl), (b) the last tuple
of the fact table identified up-to-now that belongs to RS
(CurrentNode.lastRdntTpl), and (c) a counter that
tracks the size of RS (CurrentNode.redundantCount).
Using this information, whenever TRS-BUC identifies a

736 K. Morfonios, Y. Ioannidis

Step Action Memory Image Disk Image

7

Since there are no more tuples in R,
start finalizing accumulators through
downward propagation all the way
through the other end. Flush acc-ABC
to disk, propagate the relevant part of
its contents to AB, and then make it
empty.

For both acc-AB and acc-A the
dimension values propagated from
their parent differ from those already
there, hence, flush new tuples to
disk (stored in a reference or normal
fashion, respectively, as indicated by
the meta-data).

For acc-Ø, since it was empty, just in-
sert the propagated values from acc-A.

8

Since acc-ABC is empty (and there
are no more tuples in R), flush acc-AB
to disk, propagate the relevant part of
its contents to acc-A, and then make
it empty.

Propagation results in one more
(reference) tuple flushed to node A, as
before.

Since acc-Ø has no dimension values,
any tuple matches with its contents.
Hence, perform aggregation and stop
further propagation.

9

Since acc-ABC and AB are empty (and
there are no more tuples in R), flush
acc-A to disk, propagate its measure
to acc-Ø, aggregate it with the value
already there, and then make it empty.

10

Flush acc-Ø to disk and make it
empty.

At this point, all tuples in the nodes of
the first path ABC→AB→A→Ø have
been generated. Computation contin-
ues with the next path, CA→C. We
omit the subsequent steps, since they
are similar to the ones already pre-
sented.

Fig. 6 c Steps 7–10 of PRT-PC applied on R

totally-redundant tuple t (line 2), it also checks whether
or not it is a neighbor of the marginal tuples of RS
(line 3). If it is, then t belongs to RS and the algorithm
modifies the meta-data associated to RS (lines 4–9) and
updates the previously stored redundant tuple (line 10).
Otherwise, a new redundant segment has been found.
In this case, TRS-BUC updates the corresponding vari-
ables to keep track of the newly discovered redundant
segment (lines 12–14) and flushes to disk redundancy
information consisting of a row-id reference pointing to
Current-Node.frstRdntTpl and a count that denotes the
size of RS (line 15).

If t is not found to be totally redundant in line 2,
TRS-BUC flushes a normal tuple to disk (line 19) and
proceeds recursively, like BUC. For each dimension d
between dim and numDims (line 20), it sorts its input

relation InRel with respect to dimension d (line 22) and
partitions it into disjoint partitions (line 23), each of
which contains the tuples in InRel that share the same
value on d. Note that BUC-based algorithms do not
sort the original fact table in the beginning according
to all its dimensions. Instead, in each recursive call, they
sort independently the input relation InRel according to
several individual dimensions iterating over d (line 22).
After the execution of Partition (line 23), dataCount[d]
contains the number of records for each distinct value of
the dimension d. Line 25 iterates through the partitions,
which one after the other become the input relation to
the next recursive call (line 28), driving computation to
nodes in upper lattice levels. Once the algorithm has pro-
cessed all the partitions, it repeats the entire procedure
for the next dimension.

Supporting the data cube lifecycle: the power of ROLAP 737

Algorithm 2 TRS-BUC(InRel, dim)
1: Aggregate(InRel, t); {Places result of aggregation in tuple t}
2: if InRel.count() == 1 then {if t is totally redundant}
3: if Consecutive(t, CurrentNode.frstRdntTpl) || Consecutive(t, CurrentNode.lastRdntTpl) then {t belongs to an

already found TR segment. Update redundancy information}
4: CurrentNode.redundantCount++;
5: if t < CurrentNode.frstRdntTpl then
6: CurrentNode.frstRdntTpl = t;
7: else
8: CurrentNode.lastRdntTpl = t;
9: end if

10: UpdatePreviousRedundant(CurrentNode.frstRdntTpl, CurrentNode.redundantCount);
11: else {New redundant segment found}
12: CurrentNode.frstRdntTpl = t;
13: CurrentNode.lastRdntTpl = t;
14: CurrentNode.redundantCount = 1;
15: WriteRedundant(CurrentNode.frstRdntTpl, CurrentNode.redundantCount);
16: end if
17: return; {Prune recursion}
18: end if
19: WriteNormal(t); {t is not totally redundant. Write it as normal}
20: for (d = dim; d < numDims; d++) do {Proceed bottom–up}
21: C = cardinality[d];
22: Sort(InRel, d);
23: Partition(InRel, d, C, dataCount[d]);
24: k = 0;
25: for (i = 0; i < C; i++) do
26: c = dataCount[d][i];
27: t.dim[d] = InRel[k].dim[d];
28: TRS-BUC(InRel[k ... k+c], d+1); {Recursive call}
29: k += c;
30: end for
31: t.dim[d] = ALL;
32: end for

Fig. 7 Execution plan of BUC-based methods

Figure 7 indicates the plan of recursive calls of TRS-
BUC as it traverses the cube lattice of R in a bottom–up
and depth-first manner. Figure 8 presents the TRS-BUC
cube of R (Fig. 2). Note that, unlike Figs. 4 and 5, Fig. 8
does not only show a cube, but also the correspond-
ing fact table (appearing on the top). This is necessary,
since TRS-BUC is the only method that uses references
pointing to tuples in the fact table. Furthermore, it stores
redundant tuples only in the most specialized node they
belong to (as also mentioned above), where they are
implicitly shared between this node and its ancestors

Fig. 8 Fact table R and the corresponding TRS-BUC cube

with which it has a common prefix. For instance, the
〈row-id reference, count〉 pair stored in node A (Fig. 8)
is not repeated in nodes AB, AC and ABC. Hence, node
AB contains virtually four tuples in total (two of them
are pointed by a reference physically stored in it and
two more are “inherited” from node A). Similarly, node

738 K. Morfonios, Y. Ioannidis

Step Node Action Memory Image Disk Image

1 Ø Scan all measure values in R to pro-
duce the tuple of node Ø.

2 A Sort R according to A.

3 A

Find the first partition PA1 that
consists of tuples with the same
value in A. Since PA1 > 1, per-
form aggregation and generate a
normal tuple.

4 AB Sort PA1 according to AB.

Fig. 9 a Steps 1–4 of TRS-BUC applied on R

ABC, which appears empty in Fig. 8, contains four tuples
as well, all “inherited” from nodes AB and A. Unlike
redundant tuples, normal tuples are not shared among
different nodes. Note that, as in Fig. 5, in Fig. 8, we
show 〈row-id reference, count〉 pairs within the normal
views only for simplicity. Such pairs are actually stored in
different tables. The semantics of these pairs are similar
to the ones of Fig. 5. Each row-id reference points to the
first tuple of the corresponding totally-redundant seg-
ment in the original fact table, while count holds the size
of this segment. They slightly differ in that, as explained
above, such a pair in TRS-BUC always points to a seg-
ment of tuples in the original fact table (not in any other
cube node) and is only stored in the most specialized
node it belongs to (not in any of its ancestors).

Finally note that, as with other BUC-based methods,
TRS-BUC computes each aggregate value from scratch,
without using other values already computed. Hence, it
can deal with all types of aggregate functions, including
holistic ones.

Figure 9 is similar to Fig. 6 and follows the con-
struction of the TRS-BUC cube of R shown in Fig. 8,
assuming that all of R fits in main memory. In the descrip-
tion of the algorithm’s actions, TR stands for ‘totally-
redundant’.

2.5 Algorithms BU-BST and QC-DFS

Unlike PC (which has not been studied before in con-
junction with redundancy reduction), BUC has already
been extended by previous efforts in order to deal with
redundancy as well. Within the ROLAP world, the po-
tential competitors of our BUC-based method (TRS-
BUC) are Bottom-Up-Base-Single-Tuple (BU-BST) [28]
and Quotient-Cube-Depth-First-Search (QC-DFS) [13].
The former identifies totally-redundant tuples (exactly
the same as TRS-BUC) producing a condensed cube,
hereafter called BU-BST cube. The latter is an extension
of BU-BST that identifies at least all partially-redundant
tuples in the cube. In particular, it takes all cube tuples

Supporting the data cube lifecycle: the power of ROLAP 739

Step Node Action Memory Image Disk Image

5 AB

Find the first partition PA1B1 that
consists of tuples with the same
value in AB. Since PA1B1 = 1
generate a TR tuple and prune re-
cursion (do not proceed to ABC).

6 AB

Find the second partition PA1B2
that consists of tuples with the
same value in AB. Since PA1B2 =
1 generate a TR tuple and prune
recursion (do not proceed to ABC).
Note that the tuple flushed to disk
in this step is consecutive with
the previous one in the fact table.
Hence, we update only a reference
and a count.

7 AC

Since all tuples in partition PA1
have been processed according to
AB, proceed to node AC. Hence,
sort PA1 according to AC.

8 AC

Find the first partition PA1C1 that
consists of tuples with the same
value in AC. Since PA1C1 > 1
perform aggregation and generate
a normal tuple.

Fig. 9 b Steps 5–8 of TRS-BUC applied on R

that are produced by the aggregation of the same set of
tuples in the original fact table (which include all par-
tially-redundant tuples) and assigns them into an equiv-
alence class of cells with identical aggregate value. By
doing so for all such sets of tuples, QC-DFS generates
a so-called Quotient Cube and stores it in a relational
table, called QC-Table [13].

Figures 10 and 11 present the BU-BST cube and QC-
Table of R (Fig. 2), respectively. In the BU-BST cube,
CID denotes the node to which a normal (non-redun-
dant) tuple belongs and SID the most specialized node
(further to the top) to which a redundant tuple belongs.
In the QC-Table, Class-id stores a unique identifier for
each class of equivalent tuples and Lower-Bounds stores
an expression1 that encaptulates the lower boundaries

1 Given the non-atomic nature of the logical expressions in the
Lower-Bounds attribute, QC-DFS may be perceived as not purely
ROLAP, but we consider this a minor point.

of the class, i.e., how far down the cube lattice, in all
paths, the corresponding QC-Table tuple can be used as
is (i.e., by simple projections on its dimension values).
For example, the class with id = 6 (in Fig. 11) actually
represents five redundant tuples in Fig. 3 (〈3, 2, 1, 30〉 in
node ABC, 〈2, 1, 30〉 in BC, 〈3, 1, 30〉 in AC, 〈3, 2, 30〉 in
AB, and 〈3, 30〉 in A). These are the tuples produced
by the tuple 〈3, 2, 1, 30〉 stored in the 6th row of the
QC-Table itself, by projecting A out of that tuple (as
indicated by the A part in the Lower-Bounds expres-
sion A ∨ BC), and by projecting B, C, and BC out of it
(as indicated by the BC part in the expression A ∨ BC).
Note that, in this example, we have computed a Quo-
tient Cube with respect to cover partition [13], which
seems more interesting in practice (refer to the original
paper [13] for more details).

Although BU-BST and QC-DFS are similar to
TRS-BUC in that they are all derivatives of BUC that
handle redundancy, they also have the following

740 K. Morfonios, Y. Ioannidis

Step Node Action Memory Image Disk Image

9 A

Since all tuples in partition PA1
have been processed according to
both AB and AC, go back to node
A and find the second partition
PA2 that consists of tuples with the
same value in A. Since PA2 = 1,
generate a TR tuple and prune re-
cursion (do not proceed to AB or
AC).

10 A

Find the third partition PA3 that
consists of tuples with the same
value in A. Since PA3 = 1,
generate a TR tuple and prune
recursion (do not proceed to AB
or AC).

Note that the tuple flushed to disk
in this step is consecutive with the
previous one. Hence, we update
only a reference and a count.

11 B

Since all tuples in R have been pro-
cessed for all nodes that contain A
in their grouping attributes, pro-
ceed with B and sort R according
to B.

12 B

Find the first partition PB1 that
consists of tuples with the same
value in B. Since PB1 = 1, gener-
ate a TR tuple and prune recursion
(do not proceed to BC).

Fig. 9 c Steps 9–12 of TRS-BUC applied on R

differences with it, which prove crucial for performance
overall:

– TRS-BUC groups each subset of (consecutive)
redundant tuples into a segment and does not treat
each such tuple individually.

– It does not physically store the tuples that belong
to a redundant segment, but substitutes them with a
single row-id reference (pointing to the first tuple of
the segment) and a count (holding the segment size),
in the spirit of PRS-PC. The storage cost of such ref-
erences is only a few bytes, quite small compared to
the size of the actual segment. More interestingly, the
use of row-id references redirects a large number of
disk accesses during cube operations to a single rela-
tion (the fact table), which benefits query processing
and incremental updating as well, as we show in the
following sections. (Recall that row-id references in
TRS-BUC always point to tuples in the fact table, as
described in Sect. 2.4.)

– It stores each lattice node as a separate view and
does not use a single relation to model the entire
cube. Thus, it achieves better clustering and avoids
storage of missing dimensions (i.e., *-values).

Initial experiments to assess the impact of the above
differences have shown that TRS-BUC outperforms its
counterparts in both construction time and storage space
requirements. This is illustrated in Figs. 12 and 13, which
show, respectively, the cube construction time and stor-
age space when the number of tuples in the original
fact table ranges from 250,000 to 750,000. The partic-
ular experiments were on a six-dimensional projection
of SEP85L [7], which is a commonly used real-world
dataset, as also explained in the next subsection.2

Clearly, with respect to construction time (Fig. 12),
TRS-BUC and BU-BST are quite similar, while they

2 The data for this experiment and the executable that generated
QC-Tables were kindly provided by Li et al. [15,16].

Supporting the data cube lifecycle: the power of ROLAP 741

17 B

Since all tuples in partition PB2
have been processed according to
BC, go back to node B and find
the third partition PB3 that con-
sists of tuples with the same value
in B. Since PB3 = 1, generate a
TR tuple and prune recursion (do
not proceed to BC).

18 C

Since all tuples in R have been
processed for all nodes that con-
tain B in their grouping attributes,
proceed with C and sort R accord-
ing to C.

In a similar spirit, the two (normal)
tuples in node C are found. Note
that C has no ancestors in the ex-
ecution plan (Figure 7), hence, re-
cursion stops.

Step Node Action Memory Image Disk Image

13 B

Find the second partition PB2 that
consists of tuples with the same
value in B. Since PB2 > 1, per-
form aggregation and generate a
normal tuple.

14 BC Sort PB2 according to BC.

15 BC

Find the first partition PB2C1 that
consists of tuples with the same
value in BC. Since PB2C1 = 1,
generate a TR tuple. (BC has no
ancestors in the execution plan
(Figure 7); hence, recursion would
be pruned anyway.)

16 BC

Find the second partition PB2C2
that consists of tuples with the
same value in BC. Since PB2C2 =
1, generate a TR tuple. (BC has no
ancestors; hence recursion would
be pruned anyway.) Unlike the sit-
uation in step 10, this tuple is
not consecutive to the previous
one, hence, the reference has to be
stored separately.

Fig. 9 d Steps 13–18 of TRS-BUC applied on R

both outperform QC-DFS. This is attributed to the fact
that they discover only totally-redundant segments and
tuples, respectively, whose identification is inexpensive

in BUC-like methods. On the contrary, QC-DFS
searches for cube tuples generated by the same set of
fact-table tuples (these cube tuples include but are not

742 K. Morfonios, Y. Ioannidis

Fig. 10 The BU-BST cube of R

Fig. 11 The QC-Table of R

limited to partially-redundant tuples), incurring signifi-
cant additional computational costs. With respect to
storage space (Fig. 13),3 although QC-DFS identifies
more redundant tuples, the final QC-Tables are larger
than the corresponding TRS-BUC cubes. The main rea-
sons correspond to our observations above, i.e., using
D-dimensional representations for redundant tuples in-
stead of small references, storing additional attributes
(Class-id and Lower-Bounds, which are both necessary
for answering queries), and physically storing even miss-
ing (i.e., projected-out) dimensions. On the other hand,
the BU-BST cubes are even larger than the QC-Tables,
suffering from the same overheads but also from iden-
tifying only total redundancies.

Based on the above, it appears that QC-DFS dom-
inates BU-BST on storage space (roughly by a fac-
tor of 2 in the dataset examined) but is significantly
inferior on construction time (by almost an order of
magnitude), probably losing in the overall tradeoff one
might say. This has been an observation of the creators
of QC as well; they recognized the deficiencies of a
relational approach to their concept and, soon after its

3 We believe that the final cube size is a more representative met-
ric of space requirements than the number of tuples materialized,
which has been used elsewhere [5], since to a large extent, per-
formance is determined by the exact footprint of the cube on the
disk.

Fig. 12 Comparison of BUC-based methods that remove
redundancy—construction time

Fig. 13 Comparison of BUC-based methods that remove redun-
dancy—storage space

original introduction [13], they proposed a specialized,
non-ROLAP, data structure, called QC-Tree [14], to rep-
resent Quotient Cubes efficiently. QC-Trees have not
only offered to Quotient Cubes faster construction and
greater compression than QC-Tables, but also opportu-
nities for efficient indexing, query answering, and incre-
mental maintenance, which do not seem to exist with
QC-Tables. At least with respect to incremental main-
tenance of QC-Tables, the best update algorithm that
has been presented [16] requires a full scan of the data
cube for each new insertion into the fact table, which is
prohibitive for real-world datasets.

Given the apparent favorable construction-time/
storage-space tradeoff for BU-BST and the fact that
QC-DFS is not the ideal realization of Quotient Cubes,
we have concentrated on BU-BST as the main repre-

Supporting the data cube lifecycle: the power of ROLAP 743

Fig. 14 The BU-BST+ cube
of R

sentative of earlier ROLAP methods that handle redun-
dancy and have not considered QC-DFS any further.

Among the three differences between TRS-BUC and
BU-BST mentioned above, we consider the two first as
most significant. As we show in the following sections,
substituting a large number of tuples with row-id ref-
erences pointing to segments of tuples in the fact table
gives TRS-BUC great advantages in all aspects of the
cube lifecycle. The third difference, concerns the rela-
tively straightforward storage of cube nodes as sepa-
rate views. This approach to storage has actually been
incorporated into a version of BU-BST as well at some
point [4]. In this paper, we use BU-BST+ to denote
this version of the algorithm and examine it separately
in order to compare the gains that arise from just this
optimization with those that arise from all three optimi-
zations together, as incorporated into TRS-BUC. Fig-
ure 14 illustrates the BU-BST+ cube of R (Fig. 2). Note
that every node consists of two views, one for the nor-
mal tuples and one for the redundant ones. Exceptions to
this rule are nodes that contain the right-most dimension
in their grouping attributes (in our example dimension
C), i.e., nodes C, AC, BC, and ABC. These nodes have
no ancestors in the BUC-based execution plan (Fig. 7),
hence storing tuples in them as redundant offers no ben-
efits to BU-BST+. Furthermore, note that redundant tu-
ples in the cube format of BU-BST+ are actually longer
than the normal ones stored in the same node. This is
attributed to the fact that (as also mentioned above)
totally-redundant tuples are stored only in the most
specialized node to which they belong and are shared
between this node and its ancestors in the execution
plan (Fig. 7). Since the most specialized node is the one
with the smallest number of grouping attributes, more
dimension values need to be stored there, otherwise
information would be lost and redundant tuples would
not be restorable in the ancestor nodes. Interestingly,
TRS-BUC does not suffer from either problem, due to
the use of row-ids.

2.6 Experimental evaluation

We have used C++ to implement seven algorithms4 to
study the effects of redundancy reduction on the most
efficient, purely ROLAP, computation methods: BUC,
BU-BST, BU-BST+, TRS-BUC, PC, PRT-PC, and PRS-
PC. The first four are in the BUC-family and the remain-
ing three in the PC-family (the new algorithms are in
italics). The fact that C++ has a hard limit of 2,048 (211)
files that can be simultaneously open in a process causes
some overhead to all algorithms except BU-BST for
opening and closing an exponential (in the number of
dimensions) number of files, potentially multiple times.
Fortunately, all these algorithms exhibit a locality of ref-
erence to the nodes they produce, due to their top–
down or bottom–up lattice traversal, which ensures that
a recently opened file will be used again in the near
future with great probability. Hence, we have used a
heuristic policy of closing the least-recently opened file
to remain under the limit of 2,048, which has minimized
the cost of these file operations.

We have run our experiments on a Pentium 4
(2.8 GHz) PC with 512 MB memory under Windows
XP. We have studied the execution time and result size
of the seven methods on real and synthetic datasets
under different conditions. The real datasets used are
CovType [3] and SEP85L5 [7]. CovType, which describes
forest cover-type data, has ten dimensions and 581,012
tuples. The dimensions and their cardinalities are as
follows: Horizontal-Distance-To-Fire-Points (5,827),
Horizontal-Distance-To-Roadways (5,785), Elevation
(1,978), Vertical-Distance-To-Hydrology (700), Hor-
izontal-Distance-To-Hydrology (551), Aspect (361),
Hillshade-3pm (255), Hillshade-9am (207), Hillshade-
Noon (185), and Slope (67). SEP85L, which describes

4 We have used the same code for components with the same
functionality in all algorithms.
5 SEP85L is also known as weather dataset.

744 K. Morfonios, Y. Ioannidis

Fig. 15 CovType—construction time

Fig. 16 CovType—storage space

surface synoptic weather reports, has nine dimensions
and 1,015,367 tuples. The dimensions and their cardinal-
ities are as follows: Station-Id (7,037), Longitude (352),
Solar-Altitude (179), Latitude (152), Present-Weather
(101), Day (30), Weather-Change-Code (10), Hour (8),
and Brightness (2). In both datasets, we have arranged
the dimensions in a decreasing cardinality order, for
greater efficiency, as proposed elsewhere [2] and veri-
fied in early experimentation. In Figs. 15–18, we present
the behavior of the seven algorithms on these datasets.
Our three algorithms are in black color, while the exist-
ing ones in gray. These graphs indicate that the pro-
posed algorithms outperform the original ones, both
on execution time and on storage space. Clearly, avoid-
ing redundancy has impressive benefits, especially when
done at the segment level. Note that, for CovType, TRS-
BUC is the undisputed winner, whereas for SEP85L,
PRS-PC and TRS-BUC are essentially equivalent. Fur-
thermore, as expected, BU-BST behaves better than
BU-BST+ with respect to time, whereas BU-BST+ has

Fig. 17 SEP85L—construction time

Fig. 18 SEP85L—storage space

an advantage with respect to storage space. Clearly, this
is due to the fact that BU-BST+ pays an additional per-
formance penalty for managing multiple files instead of
one, like BU-BST, but benefits from that by avoiding
the storage of missing dimensions.

To understand the different trends by the various
algorithms observed in the two real-world datasets, we
have also used synthetic datasets, where each dimension
is independent and follows the generalized Zipf distri-
bution [31] sharing the same Z parameter (which affects
skew) with all other dimensions. According to this distri-
bution, for a fact table with T tuples, the frequency Tr of
the rth most frequent value in the ith dimension is equal

to Tr = T
1
rz

∑
j

1
jz

, where j ∈ [1, Ci] and Ci denotes the car-

dinality of the ith dimension. Furthermore, we have set
Ci to be equal to T/i, ordering again the dimensions in
decreasing cardinality. In our experiments, we have var-
ied the following parameters: number of dimensions D,

Supporting the data cube lifecycle: the power of ROLAP 745

Fig. 19 Synthetic dataset (T = 5 × 105, Z = 0.8)— construction
time

Fig. 20 Synthetic dataset (T = 5 × 105, Z = 0.8)—storage space

skew in the data Z, and number of tuples in the original
fact table T. The results are as follows:

Number of dimensions: We have created moder-
ately sized (T = 5×105 tuples) and skewed (Zipf factor
Z = 0.8) datasets while varying the number of dimen-
sions from 4 to 25. To the best of our knowledge, this has
been the first attempt to study the behavior of ROLAP
cubing methods beyond the limit of ten dimensions.
Figures 19 and 20 present the behavior of the seven algo-
rithms under such conditions. The results are an average
of five different experimental sets with the same charac-
teristics. TRS-BUC is the only algorithm that handles
multi-dimensional datasets well with respect to both
time and storage space. BU-BST scales well with re-
spect to time only, whereas BU-BST+ has a moderate
behavior on both parameters. The remaining four algo-

Fig. 21 Synthetic dataset (T = 5 × 105, Z = 0.8)—number
of views

rithms have not been tested to the limits, because their
output has exceeded our storage capacity (≈ 45 GB),
indicating their scalability problems. Beyond D = 10,
their performance deteriorates, since they create an
exponential number of views. BU-BST stores the en-
tire cube as a single relation, so it does not suffer from
this. TRS-BUC and BU-BST+ could potentially store
an exponential number of views (2D+1) as well, with up
to 2D of them simultaneously open. It has been shown
in practice (Fig. 21), however, that the majority of these
views is totally redundant and generates no output, turn-
ing primarily TRS-BUC and to some extent BU-BST+
into scalable solutions as well. With respect to time, BU-
BST slightly outperforms TRS-BUC after about D=24.
Beyond this threshold, the cost of managing multiple
files starts outweighing the other benefits of TRS-BUC.
The difference, however, is still small. On the other hand,
TRS-BUC prevails by far with respect to storage space,
since the size of the cube it produces is almost unaffected
by dimensionality. This is attributed to the use of con-
stant-sized references instead of entire tuple segments.
The fact that BU-BST+ does not behave similarly indi-
cates what we have claimed earlier, i.e., that the benefits
from storing tuples in multiple views are less signifi-
cant than the use of references. Even when D = 25,
the TRS-BUC cube consumes less than 1 GB, whereas
BU-BST+, which is the next most efficient technique,
consumes more than 9 GB.

Data skew: We have created 8-dimensional datasets
of 5×105 tuples with decreasing cardinalities, while vary-
ing the Zipf factor Z from 0 (uniform distribution) to 2.4.
The behavior of the seven algorithms under such condi-
tions, presented in Figs. 22 and 23, is again an average
of five experimental sets. For uniform distributions, the
BUC-family is once again the winner. As skew increases,
however, all three representatives of the PC-family re-

746 K. Morfonios, Y. Ioannidis

Fig. 22 Synthetic dataset (T = 5 × 105, D = 8)— construction
time

Fig. 23 Synthetic dataset (T = 5 × 105, D = 8)—storage space

main almost unaffected and even seem to accelerate in
really high-skew datasets, in contrast to their counter-
parts, which slow down considerably. The reason is that,
when skew increases, some very dense areas are cre-
ated within the cube (together with some very sparse
ones, which do not affect efficiency, however). Forma-
tion of such dense areas results in heavy aggregations
and less redundancy. By traversing the lattice in a top–
down fashion, the PC-family takes advantage of results
already computed and performs aggregation efficiently.
On the contrary, the BUC-family wastes time in com-
puting the same aggregations multiple times, since as
mentioned already, nodes are constructed from scratch
with no reuse of intermediate results.

The above can also explain the different trends in the
CovType and SEP85L datasets. An informal examina-
tion of SEP85L reveals that it contains three dimensions

that are highly correlated, namely Station-Id, Longti-
tude, and Latitude (since the same station is always
located at the same Longtitude-Latitude coordinates).
This generates some very dense areas in the correspond-
ing cube deteriorating the efficiency of BUC-based
methods. On the other hand, a similar informal exami-
nation of CovType has not revealed any obvious correla-
tions that would generate dense clusters. Consequently,
the corresponding cube is sparser, which clearly helps
the performance of BUC-based methods.

Furthermore, it is interesting that the storage space
required for TRS-BUC, BU-BST, and BU-BST+ in-
creases until a maximum is reached and then decreases
for larger Z values. To understand this trend, note that
the cube size is affected by two parameters moving in
opposite directions with Z: (p1) the number of redun-
dant tuples and (p2) the average size of aggregated seg-
ments (sets of non-redundant tuples that aggregate).
As Z increases, the original fact table becomes denser,
which implies that the number of redundant tuples de-
creases while the average size of aggregated segments
increases. Thus, as Z increases, p1 causes an increase of
the cube size, since normal tuples are more expensive
than redundant ones, whereas p2 causes a decrease of
the cube size, since larger aggregated segments create
fewer normal tuples. Initially, p1 is the dominant factor,
so cube sizes increase overall, but later on p2 dominates,
so cube sizes decrease overall.

Fact table size: We have created 8-dimensional,
moderately-skewed (Z = 0.8) datasets with decreasing
cardinalities varying the fact table size from 106 to 107

tuples. The former corresponds to a fact table of approx-
imately 36 MB, while the latter to one that is ten times
larger. In order to investigate the effect of partitioning,
we have limited input buffers to approximately 100 MB.
This means that only datasets with less than 3 × 106 tu-
ples can fit in main memory. Figures 24 and 25 present
the behavior of the seven algorithms under such con-
ditions. Clearly, both execution time and storage space
of all algorithms grow linearly with size. TRS-BUC is
again the winner, having almost constant size, followed
by BU-BST+, BU-BST and PRS-PC. Note that, once
again, we have not been able to test BUC and PC to
the limit, because their output has exceeded our storage
capacity. However, their trend is obvious. Furthermore,
note that the slope of all graphs in Fig. 24 increases be-
tween the second and the third measurement point. It
is at this point where the entire fact table stops fitting
in main memory, causing additional scans of the data.
However, as expected, given the use of dynamic parti-
tioning when the original data does not fit in memory,
performance of all seven algorithms is not dramatically
affected.

Supporting the data cube lifecycle: the power of ROLAP 747

Fig. 24 Synthetic dataset (D = 8, Z = 0.8)—construction time

Fig. 25 Synthetic dataset (D = 8, Z = 0.8)—storage space

From all the above, we conclude that (a) skew is the
critical parameter and (b) TRS-BUC exhibits the best
or closely to the best performance in both construction
time and storage space, making it the undisputed winner.

3 Query answering

The main reason for constructing a cube is to improve
query response times. Constructing a condensed cube is
not beneficial if its format cannot lead to query answer-
ing efficiency. Hence, query performance should be
taken into account as well for the choice of a partic-
ular cubing algorithm (and its corresponding storage
format). In this section, we study query performance
over non-indexed cubes; the effect of indexing on the
entire cube lifecycle (including query processing as well)
is studied in Sect. 5.

Intuitively, one expects that a full BUC or PC cube
behaves best in query answering, since all data is pre-

computed and no extra costs are necessary for accessing
tuples in lattice nodes other than the ones queried. On
the other hand, answering queries over condensed cubes
generates additional costs for restoring non-material-
ized redundant tuples. In this section, we introduce some
new algorithms for answering queries over condensed
cubes and study the effect of such additional costs. We
conclude that, although it stores a condensed cube, the
format produced by TRS-BUC does not degrade query
performance. On the contrary, a wide variety of query
types runs faster over TRS-BUC cubes, because smaller
tables are scanned and, more importantly, because a
large number of access operations is redirected to a sin-
gle relation (the fact table), which offers great opportu-
nities for special optimizations.

The seven algorithms studied so far actually generate
six different cube formats, since BUC and PC store iden-
tical, fully materialized cubes. Moreover, the BU-BST
cube is monolithic and lacks any nice tuple clustering.
Combined with its large size, this forces long sequential
scans of the entire cube for answering any query. Our
experiments have shown that response times over BU-
BST are one to two orders of magnitude higher than
those over the other formats. Finally, the cubes of PRT-
PC and PRS-PC differ only in that the latter groups
segments of consecutive references. Referencing entire
redundant segments instead of tuples results in fewer
disk seeks, as multiple consecutive tuples are fetched
with one head movement. Hence, as initial experiments
have confirmed, PRS-PC always outperforms PRT-PC.
Based on all the above, in the rest of the section, we
further consider in detail only the formats created by
BUC, BU-BST+, TRS-BUC and PRS-PC.

3.1 Query model

In order to study query performance, we need to model
the queries that we expect to deal with. A general form
of a group-by query that can be answered using a data
cube is presented in Fig. 26, where f is an aggregate func-
tion, assumed to be identical to the aggregate function
used in the cube construction. Also S = {S1, . . . , Sn}
is the subset of dimensions of the original fact table
R participating in the GROUP BY clause and W =
{W1, . . . , Wk} is the subset of the ones participating in

SELECT S1, S2, ..., Sn, f(M)
FROM R
WHERE W1 op1 v1 AND ... AND Wk opk vk

GROUP BY S1, S2, ..., Sn

HAVING f(M) op v

Fig. 26 Group-by query model

748 K. Morfonios, Y. Ioannidis

the WHERE clause. Clearly, the most specialized node
that needs to be accessed for such a query is the one with
grouping attributes S ∪ W. If W ⊆ S, then S ∪ W = S, so
the node with S as its grouping attributes holds all infor-
mation necessary to answer the query and no aggrega-
tion needs to be performed at query time. Otherwise,
selection on the dimensions in W must be performed
on the node with S ∪ W as its grouping attributes and
the tuples selected must be aggregated and projected on
S to produce the result. In our study, we assume that
W ⊆ S, since query time aggregations would affect all
algorithms in the same way.

In a query, we may be interested in particular ranges
of values for each dimension Si ∈ S, affecting query
selectivity. If ni is the number of values in the range
of interest of Si, then ni ∈ [1, Ci], where Ci is the car-
dinality of Si. Depending on the values of the ni’s, we
identify three cases: (a) Setting ni = 1 for each Si ∈ S
produces a point query. In this case, W = S and all
operators are set to “=” in the WHERE clause. Point
queries are the most selective. (b) Setting ni = Ci for
each Si ∈ S produces a node query, meaning that the re-
sult is the entire node corresponding to the dimensions
in S. In this case W = Ø. Node queries are the least
selective. (c) Everything in-between is a range query.
In this case W 	= Ø and there is at least one i for
which ni ∈ [2, Ci − 1]. This is equivalent with setting
at least one operator to “>” or “<” in the WHERE
clause.

Existing cubing methods have been evaluated on
point and range queries with W = S [14,24]. To the
best of our knowledge, our work is the first to study
all three query types, including node and range que-
ries with W ⊂ S. Note that node queries cannot be
accelerated by indexing, since all node tuples must be
returned. Moreover, low selectivity (large output) intro-
duces great overheads to tree-like cubing formats (like
Dwarf [24]), due to multiple traversals of the trees, which
is not the case in our methods.

Furthermore, our query model also includes iceberg
queries, which produce answers only for groups with
large f aggregate values. We call count iceberg queries
those that, in SQL syntax, contain a predicate of the
form HAVING count(M) > v, for some v > 0. The
TRS-BUC and BU-BST+ formats have a great advan-
tage on them, because they require no redundancy to be
restored (since, for totally-redundant tuples, count = 1).
In fact, the performance of count iceberg queries over
a (full) TRS-BUC or BU-BST+ cube is identical to that
over a specialized iceberg cube produced by BUC [2]
and is thus very efficient. This property of methods that
handle totally-redundant tuples has not been studied
before.

SELECT S1, S2, ..., Sn, f(M)
FROM R
CUBE BY S1, S2, ..., Sn

HAVING f(M) op v

Fig. 27 Subcube query model

Finally, our query model also includes subcube
queries of the form presented in Fig. 27. Such queries
can be answered by visiting 2n cube nodes and are thus
conceptually equivalent to 2n node queries. They include
no WHERE clause, as it would require run-time aggre-
gations, which again would affect all algorithms in the
same way.

3.2 Group-by and count-iceberg queries

In this subsection, for each cube format of concern, we
present algorithms for answering general group-by que-
ries (of the form described above) on some node S.
Answering such queries over a BUC cube (Algorithm 3)
is straightforward: Scan all tuples in node S and return
those that satisfy the selection and HAVING criteria.

TRS-BUC adds an extra phase (Algorithm 4, lines
6-18): After scanning all normal tuples in S (lines 1-5),
it follows all appropriate references that point to seg-
ments of consecutive tuples in the original fact table
and fetches the corresponding redundant tuples. Those

Algorithm 3 BucGroupBy(node S)
1: for each tuple t in S do
2: if t satisfies selection and HAVING conditions then
3: Write(t);
4: end if
5: end for

Algorithm 4 TRSBucGroupBy(node S)
1: for each normal tuple t in S do
2: if t satisfies selection and HAVING conditions then
3: Write(t);
4: end if
5: end for
6: if not iceberg then
7: for each descendant node N of S whose grouping attributes

are a prefix of the grouping attributes of S (in the order used
for cube construction) do

8: for each pointer p in N’s references do
9: Fetch the redundant tuple set T pointed by p;

10: for each tuple t in T do
11: if t satisfies selection then
12: t = Project(t, S);
13: Write(t);
14: end if
15: end for
16: end for
17: end for
18: end if

Supporting the data cube lifecycle: the power of ROLAP 749

that satisfy the selection criteria are projected on S and
returned with the result. Note that the references fol-
lowed are not only the ones stored in S, but also those
stored in the descendants of S whose grouping attri-
butes are a prefix of the grouping attributes of S. For
example, if S = ABC (dimensions are sorted in the
same order used for cube construction), then the nodes
whose references must be followed are ABC, AB and
A. This is necessary, since pointers to totally-redundant
segments belong to an entire subcube, but are stored
only once, according to the property of total redundancy
described in Sect. 2.4. This property implies that the sets
of row-id references accessed by the algorithm in every
node are disjoint, which guarantees the correctness of
Algorithm 4, since no duplicates are returned in the
result set. As mentioned earlier, in the case of count ice-
berg queries this additional phase is not necessary (line
6), which has great impact on performance.

Furthermore, answering queries over a TRS-BUC
cube can benefit greatly from low-cost caching. Since
in TRS-BUC cubes, all references point to tuples in the
original fact table, caching any portion of it is beneficial.
Redundant tuples can then be retrieved from memory
instead of being fetched from the disk. Although cach-
ing the entire cube seems infeasible, caching (some por-
tion of) the original fact table is quite likely. The other
cube formats (including BU-BST+) do not have a similar
property and are therefore unable to make analogously
effective use of any memory available: any cached por-
tion of the cube is useful to them only for queries directly
accessing that portion.

Moreover, note that the main steps for answering
queries over a BU-BST+ cube are similar to the cor-
responding steps over a TRS-BUC cube, since the two
formats differ only in the way they store redundant tu-
ples. Hence, transforming Algorithm 4 to operate on
BU-BST+ cubes simply involves removing the lines that
access row-ids (namely, lines 8, 9 and 16) and modifying
line 10 as follows: “for each tuple t in N do”.

Finally, PRS-PC adds its own extra phase to
Algorithm 3 (Algorithm 5, lines 6-14): After scanning all
normal tuples in S (lines 1-5), it follows the references
stored in S and fetches segments of redundant tuples
from its ancestors. In this case, only references stored
in S are processed, since, as mentioned, the knowledge
that a tuple is partially redundant cannot be extended
to other nodes.

3.3 Subcube queries

The algorithms for answering subcube queries (of the
form presented in Sect. 3.1) are similar to the ones
presented in Sect. 3.2 for group-by queries. The main

Algorithm 5 PRSPcGroupBy(node S)
1: for each normal tuple t in S do
2: if t satisfies selection and HAVING conditions then
3: Write(t);
4: end if
5: end for
6: for each pointer p in S’s references do
7: Fetch the redundant tuple set T pointed by p;
8: for each tuple t in T do
9: if t satisfies selection and HAVING conditions then

10: t = Project(t, S);
11: Write(t);
12: end if
13: end for
14: end for

Algorithm 6 BucCubeBy(node S)
1: PS_S = PowerSet(GroupingAttributes(S));
2: for each node N in PS_S do
3: Call BucGroupBy(N);
4: end for

Algorithm 7 TRSBucCubeBy(node S)
1: PS_S = PowerSet(GroupingAttributes(S));
2: for each node N in PS_S do
3: for each normal tuple t in node N do
4: if t satisfies HAVING conditions then
5: Write(t);
6: end if
7: end for
8: if not iceberg then {Find Ancestors of N that belong to

PS_S}
9: A_SET = Anscestors(N, PS_S);

10: for each pointer p in N’s references do
11: Fetch the redundant tuple set T pointed by p;
12: for each tuple t in T do
13: for each node A in A_SET do
14: t’ = Project(t, A);
15: Write(t’);
16: end for
17: end for
18: end for
19: end if
20: end for

Algorithm 8 PRSPcCubeBy(node S)
1: PS_S = PowerSet(GroupingAttributes(S));
2: for each node N in PS_S do
3: Call PRSPcGroupBy(N);
4: end for

difference is that instead of accessing node S only, all
nodes of the subcube rooted at S must be accessed. The
algorithms for processing subcube queries over BUC
and PRS-PC cubes just call the corresponding group-by
query algorithms iteratively (Algorithms 6 and 8, line
3). This is not the case for TRS-BUC (Algorithm 7),
however, where an optimization is possible (lines 10-
18): Whenever a redundant tuple is restored, it is not

750 K. Morfonios, Y. Ioannidis

only returned for the currently processed node, but also
for its ancestors that belong to the subcube rooted at S.
Thus, redundant segments are accessed only once. Cach-
ing the original fact table is very beneficial in this case as
well. The algorithm for answering subcube queries over
a BU-BST+ cube is again similar with the algorithm for
TRS-BUC. It simply involves removing the lines that
access row-ids (namely, lines 11, 12, and 17) and modi-
fying line 10 as follows: “for each redundant tuple t in
node N do”.

3.4 Experimental evaluation

In this subsection, we present the results of our exper-
imental evaluation conducted to test query response
times over BUC, BU-BST+, TRS-BUC, and PRS-PC
cubes. We have run different types of queries over cubes
of real and synthetic datasets. The trends indicated by
the results of all datasets are similar, so in the subsequent
presentation we concentrate on the real datasets. We
have created random queries using the following param-
eters: Dimension Probability decides the percentage of
dimensions that participate in the GROUP BY clause
of a query. Selectivity affects the number of tuples that
match the WHERE conditions. As mentioned earlier,
for each grouping attribute Si, we may be interested in
a set of values whose cardinality ranges between 1 and
Ci. The corresponding selectivity factor belongs to the
interval [1/Ci, 1]. With respect to selectivity, we denote
queries using a 3-dimensional vector 〈x, y, z〉, called
selectivity vector, where x, y, z ∈ [0, 1] and x + y + z = 1.
Factor x denotes the percentage of grouping attributes
for which we set an equality condition in the WHERE
clause, and y the corresponding percentage of range
conditions. Factor z denotes the percentage of grouping
attributes that do not participate in the WHERE clause.
Thus, selectivity vector 〈1, 0, 0〉 represents a point query
and 〈0, 0, 1〉 a node query. Any other combination rep-
resents range queries. Note that as x increases, more
equality conditions appear, producing more selective
queries. On the contrary, larger z means lower selec-
tivity and more tuples in the result. The effect of y de-
pends on the selectivity factor. Larger selectivity factor
means broader ranges and more selected tuples. In our
experiments, for each range condition, we have set the
selectivity factor to 0.1. Finally, we have varied parame-
ter v of Figs. 26 and 27 between 1 and 100 to experiment
with different types of iceberg queries. In all experi-
ments, we have executed a warm-up phase consisting of
1% of the total number of queries to warm-up memory.
This phase is excluded from the following results. All
numbers presented are averages of 500 queries.

Fig. 28 CovType—average QRT

Fig. 29 SEP85L—average QRT

Average query: This is a group-by query with dimen-
sion probability 0.4 and selectivity vector 〈1/3, 1/3, 1/3〉.
In such queries, W ⊆ S and selectivity is moderate. Fig-
ures 28 and 29 show the average query response time
(QRT) of 500 queries run over CovType and SEP85L
cubes, respectively. Clearly, these figures indicate that
TRS-BUC outperforms all other formats, despite the
fact that it restores redundant tuples referenced by row-
ids on-line. The reasons for this are mainly its caching
ability, due to the substitution of redundant tuples by
row-ids that point to tuples in the fact table only, as well
as the small size of the stored cube itself. As mentioned
before, PRS-PC cannot take advantage of caching and
the extra cost of restoring tuples is evident. Queries over
SEP85L produce smaller answers and are thus faster,
but otherwise offer no additional intuition on the cube
formats. Hence, the rest of this section contains only the
results for CovType.

Dimension probability: Varying the dimension
probability from 0.2 to 0.6 has generated the chart of

Supporting the data cube lifecycle: the power of ROLAP 751

Fig. 30 CovType—effect of dimension probability on QRT

Fig. 30, where once more TRS-BUC exhibits the best
performance among all other formats. Interestingly, the
slope of all graphs in it decreases with the dimension
probability. This is attributed to the fact that increas-
ing the number of grouping attributes generates two
contradictory trends: On one hand, it implies access to
larger nodes, since on average more dimensions appear
in the GROUP BY clause of the corresponding queries.
This produces more disk accesses, which increases the
average query response time. On the other hand, the
queries become more selective, since on average more
dimensions appear in the WHERE clause as well. This
produces smaller result sets, which decreases the aver-
age query response time. It seems that in lower values
of the dimension probability the first trend dominates,
but it fades in larger ones.

Selectivity: Figure 31 presents the effect of selectiv-
ity on query response time. Clearly, higher selectivity
(to the left) gives an advantage to TRS-BUC, which is
lost when more tuples are generated. In node queries,
where selectivity is minimum, BU-BST+ and TRS-BUC
are essentially equivalent, even if TRS-BUC still per-
forms slightly better, since the latter is forced to restore
and project more redundant tuples on the node queried,
incurring additional costs.

Iceberg queries: As mentioned earlier, TRS-BUC
and BU-BST+ cubes answer count iceberg queries very
efficiently, since in this case, redundant tuples are not
accessed at all. Figure 32 confirms their great advantage
over the other cubes that do not have this property.

Caching: Figure 33 shows the effect of caching on
the average group-by query over TRS-BUC cubes,
which are the only ones that can take full advantage of a
cache. Cache size is indicated as the portion of the fact ta-
ble that fits in memory, ranging from 0 (no caching used)

Fig. 31 CovType—effect of selectivity on QRT

Fig. 32 CovType—iceberg QRT

Fig. 33 CovType—effect of caching on TRS-BUC for QRT

752 K. Morfonios, Y. Ioannidis

to 1 (the entire fact table is cached). As expected, perfor-
mance improves as cache size becomes larger for group-
by queries.

Subcube queries: During our experimentation with
subcube queries, we have generally found that they take
much longer than group-by queries, since (a) they visit
an exponential number of nodes, which generates
greater reading costs, and (b) they do not have a
WHERE clause (as explained in Sect. 3.1), which gen-
erates considerable output costs as well, since they are
not selective. As a result, the response time of all algo-
rithms is dominated by these factors and increases sig-
nificantly with dimensionality, bringing the graphs of
all algorithms very close to each other, with TRS-BUC
behaving only slightly better. Given the lack of any par-
ticular differentiation among storage formats and algo-
rithms, we omit the actual graphs.

4 Incremental maintenance

A cube contains aggregated data of a particular instan-
tiation of a fact table. Hence, all updates to the fact table
must be propagated to the cube as well in a batch mode,
as is typical in data warehouses. Clearly, full reconstruc-
tion of the cube is prohibitively expensive, so the cube
must be incrementally updated. In this section, we study
the problem of incremental maintenance of the data
cube and present novel algorithms for updating the four
formats discussed in Sect. 3 (BUC, BU-BST+, TRS-
BUC, and PRS-PC). As with query answering, initial
experiments have shown that the BU-BST format is not
amenable to efficient incremental maintenance, hence, it
is excluded from the subsequent detailed analysis. Incre-
mental maintenance has been studied in the past, in the
context of BU-BST+, and has been approached through
the use of indexing of the entire cube [4]. As shown in
Sect. 5, however, such indexing introduces considerable
overhead, rendering this technique relatively impracti-
cal.

Following common practice, we assume that the num-
ber of updated (delta) tuples is small compared to the
size of the fact table. Furthermore, we assume that the
aggregate functions involved in cube construction are
self-maintainable [20]. A set of aggregate functions is
self-maintainable if the new value of the functions can
be computed solely from the old values of the aggrega-
tion functions and from the changes to the base data.
Aggregate functions can be self-maintainable with re-
spect to insertions only, deletions only, or both. A self-
maintainable aggregate function is always distributive,
but a distributive aggregate function is always self-main-
tainable with respect to insertions, but not necessarily

with respect to deletions. The COUNT function can
help certain distributive aggregate functions to become
self-maintainable with respect to deletions. With respect
to algebraic aggregate functions, they can be expressed
as a scalar function of distributive aggregate functions
(e.g. avg = sum/count); hence, by keeping their (self-
maintainable) distributive parts separately, they can also
become self-maintainable. For more details refer else-
where [20].

In this section, we present algorithms only for inser-
tions; deletions and updates require some additional
machinery but can be treated following similar app-
roaches.

4.1 Algorithms

Having a fact table R, its corresponding data cube C(R)
(in BUC, BU-BST+, TRS-BUC or PRS-PC format), and
a set of delta tuples DT, there are (at least) three possi-
ble ways to obtain an updated cube. (a) Merge method:
Construct the delta cube C(DT) in the format of C(R)
and then merge it with C(R), producing C(R+DT). (b)
Direct method: For each tuple t of each node N of C(R),
find the tuples in DT that match with t on the dimen-
sion values (if any) and combine them into a new tuple.
Aggregate the remaining tuples of DT according to N
and add them to the result. (c) Reconstruction method:
Take the union of R and DT and reconstruct C(R+DT)
from scratch.

Since DT is small, we assume that we can construct
a hash-table H with all its tuples in order to acceler-
ate the Merge and Direct methods. The same holds for
every node of C(DT) as well, if considered separately,
since every such node contains at most as many tuples
as DT. (In our initial experimentation, we have found
that the alternative of building hash-tables on top of R
and the nodes of C(R) performs much worse, due to
the considerable amount of resources it requires.) Algo-
rithms 9–12 customize the above general description for
the Merge and Direct methods according to the needs
of the corresponding cube formats.

Algorithm 9 describes the BUC and PRS-PC Merge
methods. First, it constructs the delta cube C(DT)
(line 1). Then it visits each node N of C(R) in a bottom–
up fashion (line 2) and, for each tuple t in N (line 5), it
searches for a matching tuple t’ (a tuple with the same
values in all dimension attributes) in the corresponding
node N’ of C(DT) (line 6). This search is accelerated
through a hash-table H(N’) (constructed in line 4). If
such a matching tuple t’ exists, the algorithm aggregates
t and t’ (line 8), replaces t with the resulting tuple tN
(line 9), and removes t’ from the hash-table (line 10) to
exclude it from the subsequent steps. Upon exiting the

Supporting the data cube lifecycle: the power of ROLAP 753

Algorithm 9 BucOrPRSPcMerge(C(R), DT)
1: Create C(DT); {Construct the cube of deltas}
2: for each node N of C(R) in a bottom–up direction do
3: Let N’ be the corresponding node o C(DT);
4: H(N’) = Hash(N’); {Create hash-table}
5: for each tuple t in N do {Both normal and redundant for

PRS-PC}
6: t’ = FindMatchingTuple(t, H(N’)); {Use hash-table H(N’)

to find if any tuple t’ in N’ matches with t}
7: if t’ 	= NULL then
8: tN = Combine(t, t’); {Aggregate t and t’}
9: Replace(t, tN); {Write tN as normal}

10: Remove(t’, H(N’)); {Remove t’ from hash-table}
11: end if
12: end for
13: for each tuple t’ remaining in H(N’) do
14: WriteNormal(t’, N); {Redundancy may be lost...}
15: end for
16: end for

Algorithm 10 BucOrPRSPcDirect(C(R), DT)
1: for each node N of C(R) in a bottom–up direction do
2: H(DT) = Hash(DT); {Create hash-table }
3: for each tuple t in N do {Both normal and redundant for

PRS-PC}
4: ST = FindMatchingTupleSet(t, H(DT)); {Use hash-table

H(DT) to find all tuples in DT that match with t}
5: if ST 	= then
6: tN = Combine(t, Tuples(ST)); {Aggregate t and all tu-

ples in ST}
7: Replace(t, tN); {Write tN as normal}
8: Remove(Tuples(ST), H(DT)); {Remove all tuples in ST

from hash-table }
9: end if

10: end for
11: for each tuple t remaining in H(DT) do
12: ST = FindMatchingTupleSet(t, H(DT));
13: tN = Combine(Tuples(ST));
14: WriteNormal(tN , N); {Redundancy may be lost...}
15: Remove(Tuples(ST), H(DT));
16: end for
17: end for

loop that iterates over all tuples in N, it scans through
all remaining tuples in H(N’) (line 13) and writes them
as normal tuples into node N (line 14). These tuples
are the ones stored in node N’ of C(DT) that have not
been matched with any tuples of C(R). Note that the
BUC and PRS-PC Merge methods are identical, be-
cause PRS-PC cannot take advantage of the knowledge
that some delta tuple is partially redundant in C(DT)
in line 14. In particular, recall that partially-redundant
tuples are stored as pointers to ancestor nodes. Such
a pointer, pointing to some tuple in a node of C(DT),
cannot be mapped to a new pointer, pointing to some
tuple in the corresponding node of C(R+DT), because
the second node has not yet been constructed, since the
lattice is traversed in a bottom–up fashion. Bottom–up

Algorithm 11 TRSBucMerge(C(R), DT)
1: Create C(DT); {Construct the cube of deltas}
2: for each node N of C(R) in a bottom–up direction do
3: Let N’ be the corresponding node o C(DT);
4: H(N’) = Hash(N’); //Create hash-table
5: for each tuple t in N do
6: t’ = FindMatchingTuple(t, H(N’)); {Use hash-table H(N’)

to find if any tuple t’ in N’ matches with t}
7: if t’ 	= NULL then
8: tN = Combine(t, t’); {Aggregate t and t’}
9: Replace(t, tN); {Write tN as normal}

10: if t was redundant in C(R) then
11: WriteRedundant(t, Parents(N));
12: end if
13: if t’ was redundant in C(DT) then
14: WriteRedundant(t’, Parents(N’));
15: end if
16: Remove(t’, H(N’)); {Remove t’ from hash-table }
17: end if
18: end for
19: for each tuple t remaining in H(N’) do
20: if Normal(t) then
21: WriteNormal(t, N);
22: else
23: WriteRedundant(t, N);
24: end if
25: end for
26: end for

traversal is unavoidable, otherwise, pointers would be
invalidated and their restoration would be impossible.

The same problem exists for the PRS-PC Direct
method as well, which is again identical to its BUC coun-
terpart (Algorithm 10). Algorithm 10 is similar to algo-
rithm 9, thus not explicitly elaborated. This inability of
PRS-PC to take advantage of newly discovered redun-
dancy deteriorates its format slowly, eventually trans-
forming it into the BUC format.

On the contrary, TRS-BUC has no such problem.
Pointers refer to totally-redundant segments in the fact
table, which is always given. Hence, no new redundant
segment is lost and the TRS-BUC format is preserved.
Algorithm 11 describes the TRS-BUC Merge method
and Algorithm 12 the TRS-BUC Direct method. The
former is similar to Algorithm 9, but when two match-
ing tuples t and t’ are found (line 7) the aggregated
tuple tN is written in node N (line 9) and if t is redun-
dant in C(R) (line 10), t is written as redundant in all
the parents of N as well. The same holds if t’ is redun-
dant (line 13). Recall that totally-redundant tuples are
only stored in the most specialized node they belong
to, but are also redundant in all its ancestor nodes as
well. So, since t is replaced by tN in N, it must be writ-
ten as redundant in the parents of N, otherwise cube
tuples would be lost. If t remains redundant in that level,
then it will remain unaffected when the algorithm vis-
its the corresponding nodes. Otherwise, if it matches

754 K. Morfonios, Y. Ioannidis

Algorithm 12 TRSBucDirect(C(R), DT)
1: for each node N of C(R) in a bottom–up direction do
2: DT’= NotYetRedundantTuples(DT,N); {Hash only DT’s tu-

ples that have not yet been identified as redundant in N’s
descendants}

3: H(DT’) = Hash(DT’);
4: for each tuple t in N do
5: ST = FindMatchingTupleSet(t, H(DT’)); {Use hash-table

H(DT’) to find all tuples in DT’ that match with t}
6: if ST 	= then
7: tN = Combine(t, Tuples(ST)); {Aggregate t and all tu-

ples in ST}
8: Replace(t, tN); {Write tN as normal}
9: if t was redundant in C(R) then

10: WriteRedundant(t, Parents(N));
11: end if
12: Remove(Tuples(ST), H(DT’)); {Remove all tuples in

ST from hash-table}
13: end if
14: end for
15: for each tuple t in H(DT’) do
16: ST = FindMatchingTupleSet(t, H(DT’));
17: if Size(ST) == 1 then
18: WriteRedundant(t, N);
19: else
20: tN = Combine(Tuples(ST));
21: WriteNormal(tN , N);
22: end if
23: Remove(Tuples(ST), H(DT’));
24: end for
25: end for

again something else from C(DT), it will be once more
replaced by an aggregated tuple and written again as
redundant in the “grandparents” of N. This guarantees
that no redundancy is lost and preserves the TRS-BUC
format unaffected after any number of updates. (Keep-
ing updated redundant tuples for use in parent nodes
has also been used elsewhere [4].)

Having the descriptions of algorithms 9–11 as a ba-
sis, Algorithm 12 is relatively straightforward to follow,
hence, we elaborate on it no further.

Finally, note that, at the abstract level used for the
presentation of algorithms above, the merge and direct
methods for BU-BST+ are identical to those of TRS-
BUC. Nevertheless, differences do exist at finer levels
of detail, which affect performance. For example, line 5
in Algorithm 11 (line 4 in Algorithm 12 as well) states
“for each tuple t in N do”, indicating that the algorithm
accesses all tuples that belong to N, i.e., both normal
and redundant. If t is redundant, however, TRS-BUC
fetches it from the fact table, while BU-BST+ reads it
from the corresponding view. Similarly, function Write-
Redundant called in lines 11, 14, and 23 of Algorithm 11
(lines 10, 18 of Algorithm 12 as well) behaves differently
in TRS-BUC and in BU-BST+, since these two cubing
methods store redundant tuples differently.

4.2 Experimental evaluation

Here, we present the most representative results of our
experimental evaluation of the above incremental up-
date algorithms. The graphs in Figs. 34 to 40 illustrate
the performance of these algorithms over BUC, BU-
BST+, TRS-BUC, and PRS-PC cubes of the SEP85L
dataset.

Figure 34 presents the average time required to up-
date a cube with delta size set to 1% of the fact table size.
In general, the Merge and Direct methods have similar
performance. They both fail on PRS-PC and take much
longer than reconstruction because the reference targets
in PRS-PC are not all in the original fact table but may
be scattered across all cube nodes, forcing expensive
disk seeks. Furthermore, as already explained, PRS-PC
cannot exploit caching. On the contrary, incremental up-
dates on BUC, BU-BST+, and TRS-BUC have consid-
erable savings. BUC and BU-BST+ use no references,
whereas TRS-BUC benefits from the concentration of
all reference targets in the original fact table as well
as from low-cost caching and achieves the best perfor-
mance overall.

These conclusions are also confirmed by Figs. 35,
36, 37 and 38, which show the effect of the delta size
on update performance. Incremental update methods
benefit the most when the delta size is small, which is
the situation in practice. As delta size becomes com-
parable to the fact table size, however, it is better to
reconstruct the cube. Note that the Merge method scales
better than the Direct both for BU-BST+ (Fig. 36) and
for TRS-BUC (Fig. 37). The reason is that, given that
the delta cube is small and compact, searching for tuple
matches between pairs of nodes is faster than doing so
between the nodes of C(R) and DT.

Fig. 34 Incremental update performance (delta size = 1%)

Supporting the data cube lifecycle: the power of ROLAP 755

Fig. 35 BUC—effect of delta size on incremental update

Fig. 36 BU-BST+—effect of delta size on incremental update

Fig. 37 TRS-BUC—effect of delta size on incremental update

Finally, Fig. 39 shows the TRS-BUC update perfor-
mance when ten consecutive updates take place. In each
update, the delta size is 1% of the fact table size. Clearly,

Fig. 38 PRS-PC—effect of delta size on incremental update

Fig. 39 Cumulative incremental updates (delta size = 1%)—time

incremental update methods scale well with the num-
ber of updates, remaining almost unaffected. The cor-
responding cube sizes after each update are shown in
Fig. 40. This graph shows three identical lines, which
confirm, as expected, that the TRS-BUC format is pre-
served, independent of the update approach.

5 Indexing

As mentioned earlier, cubes are constructed to improve
the response times of OLAP queries. However, view
materialization may not be enough, since cube nodes are
usually large and sequential scans may be costly. In this
section, we study indexing ROLAP cubes as a potential
solution and conclude that TRS-BUC is the only cube
format that can benefit from a simple indexing method
consuming inexpensive resources.

To the best of our knowledge, the only effort so far
to index a ROLAP cube (in particular BU-BST+) uses

756 K. Morfonios, Y. Ioannidis

Fig. 40 Cumulative incremental updates (delta size = 1%) —
storage space

a collection of Zkd B-Trees, called CuboidTree [4]. The
Z-code of a tuple in a cube node is computed by inter-
leaving the bits of the binary representation of the
dimension values involved and is used as a key into
a Zkd B-Tree index. This method does not capture nat-
urally the order of tuples based on their dimension val-
ues (due to bit interleaving) making the range query
algorithms rather complicated. Moreover, the size of a
CuboidTree is comparable to the size of the indexed
cube itself, imposing considerable overhead. Finally, the
use of large Z-codes (up to 40 bytes for 10 dimensions)
generates additional delays. Given the above and the
fact that our focus has not been on indexing structures
themselves, in this paper, we simply use a collection of
B+-Trees to index each cube node. B+-Trees are sup-
ported by all relational servers and their effectiveness
has been proven. Moreover, they preserve any sorting
of tuples along each dimension, hence, benefiting both
point and range queries.

5.1 Algorithms

A particular cube node S with n grouping attributes can
be indexed by a collection of n B+-Trees, one per attri-
bute. In the leaf nodes of the ith B+-Tree (i ∈ [1, n]),
each attribute value is associated with a set of row-id
references pointing to the tuples of S whose ith attribute
has the corresponding value. Hence, the 〈key, value〉 pair
inserted in the ith B+-Tree for tuple t consists of the ith
grouping attribute value and the row-id of t, respectively.
The construction algorithm for such B+-Tree indices is
straightforward: For each cube node, scan all tuples and,
for each grouping attribute, insert a 〈key, value〉 pair into
the corresponding B+-Tree.

Row-id reference sets can be physically stored in the
leaf nodes of the corresponding B+-Tree using either
plain linked lists or bitmap vectors. Both solutions are
ROLAP compatible, hence suitable for our methods.
For instance, Fig. 41 shows node ABC (also shown in
Figs. 3, 4 and 5) indexed by row-id linked lists (at the
top) or bitmap vectors (at the bottom). In our study, we
have experimented with both alternatives, as shown in
the following subsection.

For the implementation of linked lists, we have used
existing functionality in Berkeley DB [26], the widely
accepted open-source implementation of B+-Trees. For
the implementation of bitmap vectors, we have used
our own binary files. A naive solution would construct a
separate file for each bitmap, i.e., for each distinct value
in an attribute’s domain (e.g., as indicated in the log-
ical representation of bitmap vectors in Fig. 41). This
would incur great overhead for file management dur-
ing construction. To avoid this, in our implementation,
we physically store all bitmap vectors associated with
the values of a specific attribute of a node in the same
file. This file consists of interleaved blocks from differ-
ent bitmap vectors organized in linked lists, one list per

Fig. 41 Example of indexing
node ABC using linked lists
and bitmap vectors

Supporting the data cube lifecycle: the power of ROLAP 757

Fig. 42 Physical organization
of a bitmap vector indexing
value ai

value. We use B+-Trees to index the starting block of
each list, indicating the beginning of the corresponding
bitmap vector in the file, and references from one block
to the next one that belongs to the same list. For exam-
ple, the eight bitmap vectors that are shown as separate
in the logical representation of Fig. 41, would actually be
stored in three files, one per attribute. Figure 42 shows
an example that gives more details on the actual rep-
resentation of a bitmap vector associated with value ai.
In this figure, the B+-Tree references the first block of
the corresponding bitmap vector. Subsequent blocks of
the same vector can be found by following references
stored at the end of each block (illustrated as arrows
in Fig. 42). These references allow accessing all blocks
of the same bitmap vector without scanning the entire
file. Our implementation further compresses the bitm-
aps using run-length encoding.

It is straightforward to prove that, in both alternatives
(linked lists and bitmap vectors), a D-dimensional cube
needs a total of D × 2D−1B+-Trees for full indexing of
all of its nodes. Without loss of generality, suppose that
the levels of the cube lattice (Fig. 1) are numbered in a
bottom–up fashion; then the ith level (i ∈ [0, D]) consists
of c(D, i) nodes with i grouping attributes each, where

c(D, i) is the number of combinations
(

D
i

)

= D!
i!×(D−i)! .

Hence, the total number NI of indices that need to be
constructed is computed as follows:

NI =
D∑

i=0

i × c(D, i) =
D∑

i=0

i × D!
i! × (D − i)!

= 0 +
D∑

i=1

i × D!
i! × (D − i)! =

D∑

i=1

D!
(i − 1)! × (D − i)!

=
D∑

i=1

D × (D − 1)!
(i − 1)! × [(D − 1) − (i − 1)]!

= D ×
D∑

i=1

c(D − 1, i − 1)

Setting i′ = i − 1 and D′ = D − 1 the above formula
gives:

NI = D ×
D′
∑

i′=0

c(D′, i′) = D × 2D′ = D × 2D−1q.e.d.

Algorithm 13 FetchNormalTuplesUsingIndex(node S,
Criteria Cr)
1: bitmap = CreateBitmapVector(S);
2: SetAllBits(bitmap, 1);
3: for each grouping attribute ga of S do
4: if exists selection condition on ga then
5: Use BTree(S,ga) to find the rows in node S that satisfy

Cr(ga);
6: bitmap = bitmap ∩ rows;
7: end if
8: end for
9: for each bit in bitmap do

10: if bit==1 then
11: Fetch the corresponding tuple t from node S;
12: Write(t);
13: end if
14: end for

TRS-BUC needs D additional indices for the orig-
inal fact table as well, since all references replacing
redundant tuples in cube nodes point to tuples in it.
The indirection achieved through the use of references
is so beneficial that for all practical purposes, as verified
by our experiments, we do not actually need to index
the TRS-BUC cube. In particular, we have already seen
that the bottleneck in query answering over TRS-BUC
cubes is in restoring redundant tuples from the original
fact table. Hence, instead of constructing D× (1+2D−1)

indices for the entire cube and fact table, just D B+-
Trees indexing the original fact table achieve essentially
the same and often better performance. Furthermore,
since the original fact table “lives” outside the cube, it
is highly likely that it is already indexed for other pur-
poses, implying that effective reuse of existing resources
may just be enough.

Algorithm 13 provides a general sketch of a method
that uses B+-Tree indices for fetching normal tuples
from a cube node S (in which pre-computed aggre-
gated tuples have been materialized) that satisfy some
selection criteria Cr. This algorithm is independent of
the particular cube format (BUC, BU-BST, BU-BST+,
TRS-BUC, PRS-PC, etc.). The main idea is to find the
intersection of the row-id sets of tuples that satisfy the
selection criteria of each dimension involved. Whether
such row-id sets are stored as linked lists or bitmap vec-
tors in the leaf nodes of the B+-Trees, Algorithm 13 uses
an in-memory bitmap vector (created in line 1) whose
bits are initialized to 1 (line 2). This bitmap is iteratively
(and very efficiently) intersected with the sets of rows

758 K. Morfonios, Y. Ioannidis

Algorithm 14 FetchRedundantTuplesUsingIndex(node
S, node S’, Criteria Cr)
1: bitmap = CreateBitmapVector(S);
2: SetBitsForRedundantTuples(bitmap, S, S’);
3: Steps 3–14 are identical to the corresponding steps in Algo-

rithm 13 with S’ in place of S

that satisfy the selection criteria on the corresponding
grouping attribute (lines 3–8). All (aggregated) tuples
in S indicated by the final bitmap are those that satisfy
all the selection criteria and are, hence, fetched and sent
to output (lines 9–14).

Algorithm 14 is a variation of Algorithm 13 and uses
B+-Tree indices for fetching redundant tuples from a
cube node S (which are references to normal tuples
stored in node S’, possibly the fact table) that satisfy
some selection criteria Cr. The only modification is in
line 2: Instead of initializing the entire bitmap vector
with 1s, Algorithm 14 sets only the bits that correspond
to redundant tuples in S that reference normal tuples
in S’, and the whole vector is then intersected with vec-
tors expressing the selection criteria. Thus, among the
redundant tuples of S, only those that satisfy the selec-
tion criteria are finally restored from S’, saving unneces-
sary disk seeks and avoiding a major bottleneck in query
answering.

Depending on the cube format used, a proper combi-
nation of calls to Algorithms 13 and 14 can be used for
answering any query over an indexed cube. For exam-
ple, in BUC a single call to Algorithm 13 is enough, since
BUC stores only normal tuples, while in TRS-BUC we
also need an additional call to Algorithm 14 for restor-
ing redundant tuples referencing normal tuples that are
actually stored in the original fact table.

Note that instead of B+-Trees, we could have used
more complex multidimensional structures (e.g., R-
Trees). Such a choice, however, would not really affect
performance, as the critical factor is actually the format
of the indexed cube.

5.2 Experimental evaluation

In this subsection, we present the results of our exper-
imental evaluation of the effect of indexing on cube
usage. We have repeated all the experiments described
in the previous sections (including cube construction,
query answering, and incremental updating) adding col-
lections of B+-Trees, using either row-id linked lists or
bitmap vectors. Below, we present our experiments for
both cases (for the sake of brevity, we show the most rep-
resentative graphs only). Note that “TRS-BUC Top” is
the version of TRS-BUC that uses indexing only on the

Fig. 43 CovType Cube + linked list index construction time

Fig. 44 CovType Cube + linked list index storage space

original fact table, while “TRS-BUC All” constructs a
complete set of indices. Furthermore, the performance
of BU-BST with indexing is one to two orders of magni-
tude worse than that of BU-BST+; hence, here we show
results only for the latter.

Cube construction: Figures 43 to 48 demonstrate the
effect of indexing on cube construction. The first pair of
graphs corresponds to the use of row-id linked lists, while
the second pair to the use of bitmap vectors, respec-
tively. Each bar in these graphs consists of two parts.
The black part in the bottom represents pure cube con-
struction, as presented in Figs. 15 and 16. The gray part
illustrates the additional time and space resources spent
for indexing. Interestingly, the use of bitmaps (Figs. 45
and 46) offers great savings compared to the use of
row-id linked lists (Figs. 43 and 44), due to the com-
pression capabilities that they offer, as reported else-
where as well [10]. This is better illustrated in Figs. 47
and 48, which zoom in on the total index construction
time and storage space for the most efficient methods.

Supporting the data cube lifecycle: the power of ROLAP 759

Fig. 45 CovType Cube + bitmap index construction time

Fig. 46 CovType Cube + bitmap index storage space

Fig. 47 CovType Zoom in on index construction time

It is clear that only the cube formats that replace redun-
dant tuples with references (like TRS-BUC, PRT-PC,
and PRS-PC) can be practically fully indexed without
imposing any unreasonable overhead to cube construc-

Fig. 48 CovType Zoom in on index storage space

Fig. 49 CovType Cube + linked list index average QRT

tion and storage. Especially TRS-BUC Top seems to
prevail by consuming very limited additional resources.
In BU-BST+ the overhead of index construction and
storage is comparable to the construction and storage of
the cube itself, hence non-trivial, whereas in the other
formats (BUC and PC) the amounts of additional time
and space to construct and store the corresponding indi-
ces is prohibitively large. Especially in the construction
of bitmap vectors (in Fig. 47 and Fig. 48), TRS-BUC Top
is approximately 342 times faster and produces a result
that is approximately 43 times smaller than that of BU-
BST+, which is the best existing method among the ones
compared here. The improvement is clearly impressive.

Query answering: Concerning query answering,
Figs. 49 and 50 show the results for the average query
workload. In these graphs, the black bars correspond to
unindexed cubes, as presented in Fig. 28. Interestingly,
these figures demonstrate that not only TRS-BUC Top
consumes fewer resources, but it also exhibits very fast
query response times, which are essentially the same

760 K. Morfonios, Y. Ioannidis

Fig. 50 CovType Cube + bitmap index average QRT

Fig. 51 SEP85L Cube + linked list index incremental update per-
formance (delta size = 1%)

and sometimes better than the query response times of
TRS-BUC ALL. Especially when combined with bit-
map vectors, TRS-BUC Top provides query response
times that are more than a factor of 4 faster than the
unindexed case (Fig. 50), a considerable improvement.
The query response times of all the other formats are
always worse. Clearly, these properties make TRS-BUC
Top the best choice. Experiments with different param-
eter values have exhibited similar trends as well; hence,
the corresponding graphs are omitted.

Incremental maintenance: Finally, Figs. 51 to 54 dem-
onstrate the results of our experiments with incremental
maintenance of indexed cubes. In Figs. 51 and
52, the dashed bars correspond to pure index mainte-
nance costs, while the other bars to the total cost of
updating both the indices and the cube itself. Figures 53
and 54 extend Fig. 40 and show two groups of three iden-
tical lines: the bottom line corresponds to the three ver-
sions of TRS-BUC Top, whereas the top line to the three

Fig. 52 SEP85L Cube + bitmap index incremental update perfor-
mance (delta size = 1%)

Fig. 53 SEP85L Cube + linked list index cumulative incremental
update storage space (delta size = 1%)

versions of TRS-BUC All. Clearly, TRS-BUC Top im-
poses minimal additional costs for incremental updates
as well, especially when bitmap vectors are used.

Overall, the results indicate that TRS-BUC is essen-
tially the only method that can be practically indexed,
using limited amounts of additional resources, and can
take advantage of such indices for all phases of the data
cube lifecycle.

6 Related work

The problem of efficient data cube implementation has
attracted much attention in the database community.
After Gray et al. proposed the cube-by operator [6], a
plethora of papers has been published in this area. Most
cube construction and storage methods comply with the

Supporting the data cube lifecycle: the power of ROLAP 761

Fig. 54 SEP85L Cube + bitmap index cumulative incremental
update storage space (delta size = 1%)

Fig. 55 Classification of advanced cubing methods

ROLAP architecture [1,2,4,6,9,12,13,21,23,28] and are
surveyed in detail elsewhere [19], and fewer with the
MOLAP architecture [11,30]. The problem of efficient
storage has also been addressed through other, orthogo-
nal approaches, whose study exceeds the purpose of this
paper. Examples include approximation methods [27]
as well as partial cubing methods, which produce only
a thin layer of the cube, keeping additional indices that
help cube node construction at query time [17].

As mentioned earlier, among the ROLAP techniques
that can handle large fact tables and store the entire cube
on disk, the “champions” are BUC [2] and PC [21]. Our
work has started from them and has resulted in PRT-
PC and PRS-PC, which incorporate redundancy reduc-
tion into PC, and TRS-BUC, which does the same into
BUC. The methods that are closer to our work are BU-
BST/BU-BST+ [28,4] and QC-DFS [13], which have ex-
tended BUC in the spirit that TRS-BUC does but with
several crucial differences, as described in Sect. 2.5. In
this paper, we have shown that TRS-BUC tackles the
data cube problem in a comprehensive fashion, provid-
ing efficient algorithms for all phases of the cube life-
cycle. To the contrary, the original algorithms behave
well only in (off-line) computation and storage, whereas

earlier redundancy-reducing BUC extensions, i.e., BU-
BST/BU-BST+ and QC-DFS, produce relational cube
representations (BU-BST/BU-BST+ cubes, and QC-
Tables, respectively) that have inferior performance next
to TRS-BUC cubes. Note that query processing and
incremental maintenance has been studied earlier for
BU-BST/BU-BST+ cubes as well [4]. The particular
solutions proposed, however, assume that the entire
cube is indexed, which as shown in this paper, is not
very practical.

The above algorithms can be classified as purely RO-
LAP, as it is not only their storage of the cube that is
relational but their processing of the fact table during
construction as well, consisting mostly of standard rela-
tional operations (e.g., sorting and projecting) and us-
ing mostly in-memory relations (see Figs. 6 and 9). This
makes these techniques easy to integrate in any existing
relational server. In contrast to them, there have been
several proposals recently that continue to store the
cube in relational views but construct it with the help of
specialized in-memory data structures that represent the
fact table compactly and are traversed in efficient, non-
relational ways, e.g., H-Cubing [8], Star-Cubing [29],
MM-Cubing [22], and Range-Cubing [5]. They have all
been presented primarily under the assumption that the
complex data structures they use fit in main memory.
Ideas on how to transform some of these techniques
into dealing with large datasets are mainly based on par-
titioning the original fact table and/or on constructing
the corresponding data structures externally and paging
them in and out of disk during their traversal [8,22,29].
The effectiveness of these ideas remains open, however,
as to the best of our knowledge, they have not been
experimentally evaluated. On the contrary, our experi-
ments have indicated (Fig. 24) that TRS-BUC operates
efficiently on memory-fitting segments of the fact ta-
ble generated by the partitioning scheme of the original
BUC method [2], without suffering a great performance
loss.

Furthermore, with the exception of Range-Cubing
[5], all the other methods using special in-memory struc-
tures (namely, H-Cubing [8], Star-Cubing [29], and MM-
Cubing [22]) construct complete or iceberg cubes, with
no redundancy reduction. They are capable of
performing Apriori pruning [2], however, as part of
their iceberg-cube construction functionality. Hence, in
principle, they could be extended to identify and re-
move totally-redundant tuples (count = 1) and produce
TRS-BUC cubes. Although using a different construc-
tion algorithm, this approach could take advantage of
all the benefits that the TRS-BUC cube representa-
tion has for the remaining phases of the cube lifecycle:
efficient querying, indexing, and incremental updating.

762 K. Morfonios, Y. Ioannidis

This approach would probably outperform TRS-BUC
on small and dense datasets, as these algorithms put
particular emphasis on dense areas of the fact table, but
would probably lose on large or sparse datasets given
the redundancy-reduction characteristics of TRS-BUC.
Preliminary experimentation indeed concurs with the
above intuition. On the other hand, Range-Cubing [5]
does remove redundancy, i.e., redundancy that arises
from cube tuples that are produced by the same set of
fact-table tuples and belong to any path between two
specified nodes in the cube lattice, called range. Essen-
tially, a Range-Cube is identical to a QC-Table that only
stores atomic values in the Lower-Bounds column, i.e.,
lower bounds of equivalent classes that do not include
disjunctions (“∨”) in their encapsulating logical expres-
sion (Sect. 2.5, Fig. 11). This means that Range-Cubes
are expected to be larger than QC-Tables and also suf-
fering from some of the same deficiencies (e.g., the need
for additional meta-data associated with every tuple and
the monolithic format). Given that QC-Tables are out-
performed by TRS-BUC, all indications are that Range-
Cubes will be outperformed as well.

Moving even further away from ROLAP, there is
a small number of additional techniques that depend
on specialized hierarchical data structures not only for
in-memory construction of the cube but for the entire
cube lifecycle, including storage on disk, querying, and
updating. The main representatives in this category are
Dwarf [24] and QC-Tree [14]. Dwarf [24] seems to be
the strongest algorithm overall, since it is the only one
that guarantees a polynomial time and space complex-
ity with respect to dimensionality [25]. It is based on
a highly compressed data structure that eliminates pre-
fix and suffix redundancies efficiently. Prefix redundancy
occurs when two or more tuples in the cube share the
same prefix. For example, in the cube of Fig. 3, there are
six tuples that have the same value A = 1 in their first
dimension. These are tuples 〈1, 1, 3, 50〉 and 〈1, 2, 3, 10〉
in node ABC, tuples 〈1, 1, 50〉 and 〈1, 2, 10〉 in AB, tu-
ple 〈1, 3, 60〉 in AC, and tuple 〈1, 60〉 in A. This group
exhibits prefix redundancy where the prefix size is 1, i.e.,
it involves just the first dimension. There are also other
examples where the length of the redundant prefix is
greater than 1. Dwarf recognizes this kind of redundancy
and stores every unique prefix just once. This does not
affect the total number of cube tuples but reduces the
space required to store each tuple. Prefix redundancy is
not captured by TRS-BUC or any of the other methods
investigated in this paper. Fortunately, it is relevant only
to the storage of normal (non-redundant) tuples, which
are few, as demonstrated by our experimental study,
making the penalty of not dealing with it relatively neg-
ligible. On the other hand, suffix redundancy is in some

sense complementary to prefix redundancy and occurs
when two or more cube tuples share the same suffix, i.e.,
the same dimension and aggregate values on the right.
For example, in the cube of Fig. 3, tuples 〈1, 1, 3, 50〉 in
node ABC and 〈1, 3, 50〉 in BC exhibit suffix redundancy,
as they share the same values in their right-most dimen-
sions (B and C) and also in their aggregated measure.
Suffix redundancy occurs primarily when multiple cube
tuples are generated by the same set of tuples in the fact
table, which of course contribute the exact same aggre-
gate value every time. Hence, it is similar to the notion
of partial redundancy of segments, which is dealt with by
several algorithms examined in this paper and has been
shown to benefit performance substantially.

An advantage of Dwarf is that it does not only store a
data cube compactly, but also serves as an index that can
accelerate point and selective range queries. TRS-BUC
needs additional, even if inexpensive, external indices
to attempt to compete with Dwarf’s performance on
such queries. Furthermore, as also mentioned above,
Dwarf has polynomial time and space complexity [25],
whereas TRS-BUC has no proof of polynomial behav-
ior, although our experimental evaluation has shown
that it is not cursed by dimensionality. On the other
hand, TRS-BUC promises better results in node and
subcube queries of low selectivity, since it clusters tu-
ples in each node and, unlike Dwarf, it requires no mul-
tiple tree traversals. Furthermore, TRS-BUC preserves
its format after incremental updates, so full reconstruc-
tion is never necessary, whereas frequent incremental
updates would slowly deteriorate Dwarf’s clustering.
Hence, both TRS-BUC and Dwarf appear to be via-
ble solutions to the cubing problem, each with its own
advantages and disadvantages, which should be studied
in detail in future work.

The other major technique that employs a special-
ized data structure for external storage of the cube is
QC-Tree [14]. As mentioned in Sect. 2.5, QC-Tree imple-
ments Quotient Cubes in non-relational fashion to over-
come the limitations of QC-DFS [13], which stores the
cube in QC-Tables. QC-Tree has similar properties with
Dwarf, capturing prefix redundancy and grouping to-
gether classes of tuples generated by the aggregation of
the same set of fact-table tuples. On the other hand, it
shares some of Dwarf’s weaknesses compared to TRS-
BUC. Again, the main distinction in favor of TRS-BUC
compared to both Dwarf and QC-Tree is that it is RO-
LAP compatible, which makes it easier to implement
over existing relational servers, taking advantage of all
the nice properties of a mature technology. A compre-
hensive comparison of all three techniques is necessary
to draw any precise conclusions on the exact trade-offs
among them. This is beyond the scope of this paper,

Supporting the data cube lifecycle: the power of ROLAP 763

which focuses on pure ROLAP approaches, but is part
of our plans for future work.

The above overview of existing techniques and their
characteristics is summarized visually in the table illus-
trated in Fig. 55. The table classifies (a) BUC [2] and PC
[21], the “champions” of ROLAP techniques that store
the entire cube on disk, (b) the most widely accepted
methods that have been proposed subsequently, and (c)
the techniques introduced in this paper. This table also
helps explain the intuition behind particular choices we
have made in designing our methods and sets a clear
boundary on the scope of this paper: pure ROLAP algo-
rithms that are capable of compressing the final cube.
Comparing across the columns of the table, primarily
the ROLAP and non-ROLAP columns, is the subject of
a separate study.

Finally, in this paper, we have focused on all the
phases of the cube lifecycle but have dealt with only
flat datasets, ignoring the orthogonal issue of dealing
with datasets whose dimensions are organized in hierar-
chies. In an independent thread of our research [18], we
have essentially studied only construction and storage of
cubes and have proposed the CURE algorithm, which
deals effectively with the challenges introduced by the
nature of hierarchies.

7 Conclusions and future work

In this paper, we have incorporated redundancy reduc-
tion into the best existing pure ROLAP methods for
cube implementation and have proposed a suite of novel
algorithms that deal with all aspects of cube usage,
including efficient construction, storage, query answer-
ing, incremental updating, indexing, and caching. To the
best of our knowledge, this is essentially the first such
comprehensive approach to the problem in the ROLAP
context, treating all the above aspects in an independent
fashion. We have created comprehensive testing envi-
ronments, broader than the ones used in the past, and
have experimented with both synthetic and real-world
datasets. Our extensive evaluation has shown that TRS-
BUC dominates or nearly dominates its competitors in
all aspects of the cube problem: It provides fast compu-
tation of a fully materialized cube in compressed form,
is incrementally updateable, and exhibits quick query
response times that can be accelerated by inexpensive
indexing and caching. TRS-BUC appears to be the first
ROLAP cubing method that packages all these nice
properties into a single comprehensive solution giving
strong indication of the power of ROLAP.

Our future work directions include extension of TRS-
BUC to store groups of nodes/views in the same file. This
presents an interesting implementation problem, since

we have seen that file management generates consider-
able overhead in datasets with high dimensionality. We
are also planning to investigate whether or not our intu-
ition that TRS-BUC storage requirements grow poly-
nomially with dimensionality, as indicated by Fig. 20,
can be proven analytically. Finally, we intend to com-
pare TRS-BUC with the most prominent non-ROLAP
methods (e.g., Dwarf and QC-Tree) in order to study
the comparative advantages and disadvantages of the
corresponding general philosophies.

Acknowledgments We would like to thank Cuiping Li, Gao
Cong, Anthony K. H. Tung, and Shan Wang for supplying their
implementation of QC-DFS and allowing us to use it in our exper-
iments [15,16]. Furthermore, we would like to thank Jianlin Feng
for explaining to us some details of BU-BST [4,28], especially
regarding the use of separate views to store each node of the cube
in a later version of the algorithm [4]. Finally, we would also like
to thank the anonymous referees for their valuable comments.

References

1. Agarwal, S., Agrawal, R., Deshpande, P., Gupta, A.,
Naughton, J.F., Ramakrishnan, R., Sarawagi, S.: On the com-
putation of multidimensional aggregates. In: Proceedings of
Very Large Data Bases (VLDB), pp. 506–521 (1996)

2. Beyer, K.S., Ramakrishnan, R.: Bottom–up computation of
sparse and iceberg cubes. In: Proceedings of ACM Spe-
cial Interest Group on Management of Data (SIGMOD),
pp. 359–370 (1999)

3. Blackard, J.A.: The forest covertype dataset. ftp://ftp. ics.uci.
edu/pub/machine-learning-databases/covtype

4. Feng, J., Si, H., Feng, Y.: Indexing and incremental updating
condensed data cube. In: Proceedings of International Con-
ference on Scientific and Statistical Database Management
(SSDBM), pp. 23–32 (2003)

5. Feng, Y., Agrawal, D., Abbadi, A.E., Metwally, A.: Range
cube: efficient cube computation by exploiting data correla-
tion. In: Proceedings of International Conference on Data
Engineering (ICDE), pp. 658–670 (2004)

6. Gray, J., Bosworth, A., Layman, A., Pirahesh, H.: Data
cube: A relational aggregation operator generalizing group-
by, cross-tab, and sub-total. In: Proceedings of Interna-
tional Conference on Data Engineering (ICDE), pp. 152–159
(1996)

7. Hahn, C., Warren, S., London, J.: Edited synoptic cloud re-
ports from ships and land stations over the globe. http://cdiac.
esd.ornl.gov/cdiac/ndps/ndp026b.html

8. Han, J., Pei, J., Dong, G., Wang, K.: Efficient computation
of iceberg cubes with complex measures. In: Proceedings
of ACM Special Interest Group on Management of Data
(SIGMOD), pp. 1–12 (2001)

9. Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing
data cubes efficiently. In: Proceedings of ACM Special Inter-
est Group on Management of Data (SIGMOD), pp. 205–216
(1996)

10. Johnson, T.: Performance measurements of compressed bit-
map indices. In: Proceedings of Very Large Data Bases
(VLDB), pp. 278–289 (1999)

764 K. Morfonios, Y. Ioannidis

11. Karayannidis, N., Sellis, T.K., Kouvaras, Y.: Cube file: A file
structure for hierarchically clustered olap cubes. In: Proceed-
ings of International Conference on Extending Database
Technology (EDBT), pp. 621–638 (2004)

12. Kotsis, N., McGregor, D.R.: Elimination of redundant views
in multidimensional aggregates. In: Proceedings of Data
Warehousing and Knowledge Discovery (DaWaK), pp. 146–
161 (2000)

13. Lakshmanan, L.V.S., Pei, J., Han, J.: Quotient cube: how to
summarize the semantics of a data cube. In: Proceedings of
Very Large Data Bases (VLDB), pp. 778–789 (2002)

14. Lakshmanan, L.V.S., Pei, J., Zhao, Y.: Qc-trees: an effi-
cient summary structure for semantic olap. In: Proceedings
of ACM Special Interest Group on Management of Data
(SIGMOD), pp. 64–75 (2003)

15. Li, C., Cong, G., Tung, A.K.H., Wang, S.: Incremental mainte-
nance of quotient cube for median. In: Proceedings of Inter-
national Conference on Knowledge Discovery and Data
Mining (KDD), pp. 226–235 (2004)

16. Li, C., Tung, K.H., Wang, S.: Incremental maintenance of
quotient cube based on galois lattice. J. Comput. Sci. Tech-
nol. 19(3), 302–308 (2004)

17. Li, X., Han, J., Gonzalez, H.: High-dimensional olap: a min-
imal cubing approach. In: Proceedings of Very Large Data
Bases (VLDB), pp. 528–539 (2004)

18. Morfonios, K., Ioannidis, Y.: Cure for cubes: Cubing using
a rolap engine. In: Proceedings of Very Large Data Bases
(VLDB) (2006)

19. Morfonios, K., Konakas, S., Ioannidis, Y., Kotsis, N.: Rolap
implementations of the data cube (submitted)

20. Mumick, I.S., Quass, D., Mumick, B.S.: Maintenance of data
cubes and summary tables in a warehouse. In: Proceedings
of ACM Special Interest Group on Management of Data
(SIGMOD), pp. 100–111 (1997)

21. Ross, K.A., Srivastava, D.: Fast computation of sparse data-
cubes. In: Proceedings of Very Large Data Bases (VLDB),
pp. 116–125 (1997)

22. Shao, Z., Han, J., Xin, D.: Mm-cubing: computing iceberg
cubes by factorizing the lattice space. In: Proceedings of
International Conference on Scientific and Statistical Data-
base Management (SSDBM), pp. 213–222 (2004)

23. Shukla, A., Deshpande, P., Naughton, J.F.: Materialized view
selection for multidimensional datasets. In: Proceedings of
Very Large Data Bases (VLDB), pp. 488–499 (1998)

24. Sismanis, Y., Deligiannakis, A., Roussopoulos, N., Kotidis,
Y.: Dwarf: shrinking the petacube. In: Proceedings of ACM
Special Interest Group on Management of Data (SIGMOD),
pp. 464–475 (2002)

25. Sismanis, Y., Roussopoulos, N.: The complexity of fully mate-
rialized coalesced cubes. In: Proceedings of Very Large Data
Bases (VLDB), pp. 540–551 (2004)

26. Sleepycat Software: The berkeley database (berkeley db).
http://www.sleepycat.com

27. Vitter, J.S., Wang, M., Iyer, B.R.: Data cube approximation
and histograms via wavelets. In: Proceedings of International
Conference on Information and Knowledge Management
(CIKM), pp. 96–104 (1998)

28. Wang, W., Lu, H., Feng, J., Yu, J.X.: Condensed cube: an effi-
cient approach to reducing data cube size. In: Proceedings of
International Conference on Data Engineering (ICDE), pp.
155–165 (2002)

29. Xin, D., Han, J., Li, X., Wah, B.W.: Star-cubing: computing
iceberg cubes by top–down and bottom–up integration. In:
Proceedings of Very Large Data Bases (VLDB), pp. 476–487
(2003)

30. Zhao, Y., Deshpande, P., Naughton, J.F.: An array-based
algorithm for simultaneous multidimensional aggregates. In:
Proceedings of ACM Special Interest Group on Manage-
ment of Data (SIGMOD), pp. 159–170 (1997)

31. Zipf, G.K.: Human Behaviour and the Principle of Least
Effort: an Introduction to Human Ecology. Addison-
Wesley, Reading (1949)

	Supporting the data cube lifecycle: the power of ROLAP
	Abstract
	Introduction
	Cube construction
	Cube redundancy
	Suite of algorithms investigated
	Algorithms PRT-PC and PRS-PC
	Algorithm TRS-BUC
	Algorithms BU-BST and QC-DFS
	Experimental evaluation
	Query answering
	Query model
	Group-by and count-iceberg queries
	Subcube queries
	Experimental evaluation
	Incremental maintenance
	Algorithms
	Experimental evaluation
	Indexing
	Algorithms
	Experimental evaluation
	Related work
	Conclusions and future work
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

