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Abstract On-line analytical processing (OLAP) typically
involves complex aggregate queries over large datasets. The
data cube has been proposed as a structure that material-
izes the results of such queries in order to accelerate OLAP.
A significant fraction of the related work has been on Rela-
tional-OLAP (ROLAP) techniques, which are based on rela-
tional technology. Existing ROLAP cubing solutions mainly
focus on “flat” datasets, which do not include hierarchies in
their dimensions. Nevertheless, as shown in this paper, the
nature of hierarchies introduces several complications into
the entire lifecycle of a data cube including the operations of
construction, storage, indexing, query processing, and incre-
mental maintenance. This fact renders existing techniques
essentially inapplicable in a significant number of real-world
applications and mandates revisiting the entire cube lifecycle
under the new perspective. In order to overcome this prob-
lem, the CURE algorithm has been recently proposed as an
efficient mechanism to construct complete cubes over large
datasets with arbitrary hierarchies and store them in a highly
compressed format, compatible with the relational model.
In this paper, we study the remaining phases in the cube
lifecycle and introduce query-processing and incremental-
maintenance algorithms for CURE cubes. These are signif-
icantly different from earlier approaches, which have been
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proposed for flat cubes constructed by other techniques and
are inadequate for CURE due to its high compression rate
and the presence of hierarchies. Our methods address issues
such as cube indexing, query optimization, and lazy update
policies. Especially regarding updates, such lazy approaches
are applied for the first time on cubes. We demonstrate the
effectiveness of CURE in all phases of the cube lifecycle
through experiments on both real-world and synthetic data-
sets. Among the experimental results, we distinguish those
that have made CURE the first ROLAP technique to complete
the construction and usage of the cube of the highest-density
dataset in the APB-1 benchmark (12 GB). CURE was in fact
quite efficient on this, showing great promise with respect to
the potential of the technique overall.
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1 Introduction

It is well known that business analysts and decision makers
are not interested in individual data items but mainly focus
on summaries generated by properly aggregating large col-
lections of such data. Analysis of such summaries usually
reveals new knowledge in the form of hidden trends and pat-
terns that could then be exploited to obtain business advan-
tage. The need for effectively supporting such analysis on
a large scale has resulted in the advent of on-line analytical
processing (OLAP) and data mining technologies [5], which
have motivated a plethora of studies on efficient, accurate,
and effective techniques to address relevant new challenges
in data management.

Contemporary on-line analysis tools and spreadsheet
applications implement features that allow users to explore
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Fig. 1 Fact table R and its data
cube

A B C M
1 1 1 10
1 1 2 20
2 2 3 40
3 2 1 45
3 3 3 45
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1 1 1 10
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1 1 30 1 1 10 1 1 10
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3 2 45 2 3 40 2 3 40
3 3 45 3 1 45 2 1 45

3 3 45 3 3 45

A M B M C M
1 30 1 30 1 55
2 40 2 85 2 20
3 90 3 45 3 85
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(a) Fact Table R

(b) Cube of R
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(c) Lattice Example

SELECT A, B, C, SUM(M) as M
FROM R
GROUP BY A, B, C

SELECT B, C, SUM(M) as M
FROM R
GROUP BY B, C

SELECT C, SUM(M) as M
FROM R
GROUP BY C

SELECT SUM(M) as M
FROM R

the underlying data, looking at it from different viewpoints
and at different granularities, while interacting with it in an
ad-hoc fashion by roll-up/drill-down operations. As an exam-
ple, consider a business analyst of a shoe-store chain who sees
that the total 2008 revenue for the chain was 〈$10,200,000〉.
By drilling down, the analyst can see how this amount is split
among states, e.g., 〈CA, $2,000,000〉, 〈CO, $4,200,000〉, and
〈MT, $4,000,000〉. Being disappointed by California sales,
the analyst may further focus on this state and examine its
sales revenue per season: 〈CA, winter, $1,000,000〉, 〈CA,
spring, $350,000〉, 〈CA, summer, $150,000〉, and 〈CA, fall,
$500,000〉. This detailed view indicates that sales are fine in
winter, but drop during the other seasons, especially summer.
In turn, this observation can lead to a new strategy that sepa-
rates California from the other states and promotes different
kinds of shoes there, given the warmer climate.

The data may also undergo some data mining analysis,
e.g., to identify clusters of shoe-sales characteristics with
similar revenue behavior. For instance, Colorado and
Montana may cluster together regarding their overall yearly
revenue, while at a more refined level, they may be similar
only with respect to specific shoe types and this with a few
months of delay for Montana. Such trends could lead to stock
surplus transfers from Colorado to Montana but only for shoe
types that are popular in both.

From a system’s perspective, OLAP or data mining
explorations such as the ones above generate large num-
bers of ad-hoc queries that make extensive use of grouping
and aggregation in different subspaces of the multidimen-
sional space of the problem concerned [9]. Unfortunately,
on-the-fly aggregation over large volumes of data can be
computationally very expensive; essentially, the success of
OLAP and data mining techniques depends on the efficiency
of the underlying systems in supporting aggregate queries in
real-world settings.

To overcome the limitations and inefficiencies of tradi-
tional data systems that serve as underlying infrastructures
for OLAP, Gray et al. [9] proposed the data cube: a struc-

ture that stores precomputed results of group-by aggregate
queries on all possible combinations of the dimension-attri-
butes over a fact table in a data warehouse. For example,
Fig. 1a shows a fact table R and Fig. 1b shows the correspond-
ing data cube (in uncompressed form). In this figure, we have
arranged the group-by views that form the cube, called cube
nodes, in positions reminiscent of the so-called cube lattice
[12] (Fig. 1c), which indicates computational dependencies
among different nodes. Every node in the cube lattice rep-
resents a group-by query of the form shown in Fig. 1b and
is labeled with its grouping attributes, which consist of the
subset of dimensions that participate in the group-by clause
of the corresponding query. Clearly, materializing the results
of a large number of aggregate queries in a cube promises
better response times and therefore a better infrastructure for
OLAP.

1.1 Problem description

Intuitively, materializing the entire cube is ideal for fast
access to aggregated data. Nevertheless, it poses consider-
able costs in computation and maintenance time, as well
as in storage space. In order to overcome this problem and
balance the tradeoff between query-response times and cube-
resource requirements, implementation of the complete data
cube has been studied using various data structures to con-
struct and store the cube. Orthogonal to the issue of how to
construct and store a cube is the issue of selecting what por-
tion of the cube to materialize (i.e., which particular cube
nodes to construct and store). Partial materialization of the
cube is a popular topic in the related literature [12,27,33,37].
Combining partial materialization techniques with our work
seems possible, but exceeds the scope of this work.

In general, existing data-cube implementation methodol-
ogies can be partitioned into four main categories, depend-
ing on the data structures and formats they use to compute
and store a data cube. On the one hand, Relational-OLAP
(ROLAP) and Multidimensional-OLAP (MOLAP) methods
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use materialized views and multidimensional arrays, respec-
tively, focusing mainly on efficient sharing of computational
costs (like sorting or hashing) during cube construction. On
the other hand, Graph-Based approaches exploit special-
ized graphs to compute and store cubes efficiently. Finally,
Approximation-Based methods use various in-memory
representations (e.g., histograms), inspired mainly from
statistics.

With the exception of ROLAP, all the other methodologies
generate cube formats that are inherently compact and allow
fast data access:

– MOLAP methods store only aggregate values; the dimen-
sion values are stored only once and are indirectly implied
by the coordinates of the position of cells in the multi-
dimensional arrays used. This property compresses the
cube [42] and allows fast access to aggregates, since it
is known a-priori which cells to visit for answering any
particular query.

– Graph-based methods exploit specialized structures that
compress the cube by removing redundant information.
At the same time, these structures work as indices as well
and allow efficient manipulation of cube data [35].

– Approximation-based methods [39] use compact
in-memory cube representations that inherently compress
a cube at a price of some small loss of information and
allow fast calculation of approximate answers.

Unlike their competitors, ROLAP methods are not inher-
ently characterized by such compression features. They need
some additional machinery to compress the cube and addi-
tional indices to manipulate it efficiently. Motivated by the
above requirements, this paper focuses on ROLAP and
attempts to stretch it to its limits when dealing with cubes
in the presence of data hierarchies. The remaining method-
ologies are out of the scope of the paper, as their solutions
cannot be incorporated into the ROLAP framework.

Existing ROLAP cubing algorithms have several weak-
nesses. A recent study [24] reveals that most of these algo-
rithms focus mainly on construction and storage of flat cubes,
i.e., cubes constructed over flat datasets. Issue 1: The lifecy-
cle of a data cube does not involve off-line construction and
storage only, but also every-day cube usage, including query
answering and incremental maintenance. Issue 2: Real-world
datasets are not always “flat” but are usually organized in
hierarchies. For example, a dimension “Region” may con-
tain values at different levels of detail, forming the hierar-
chy “City”→“Country”→“Continent”. The first issue has
been studied elsewhere [23], but without considering the
additional complications introduced by hierarchies. On the
other hand, the second issue has been studied with respect to
construction and storage only [22], neglecting the remaining
phases in the cube lifecycle. So, revisiting the cube lifecycle

from a new perspective is mandatory to solve both issues
in a comprehensive fashion; this is the main purpose of this
paper.

Hierarchies are rather common in real-world applications
and quite significant, as they offer great flexibility in describ-
ing the data at different granularities and form the basis for
roll-up and drill-down operations [13]. However, as briefly
mentioned above as well, their nature introduces several com-
plications into all phases of the cube lifecycle that cannot be
handled by straightforward extensions of existing techniques,
rendering existing algorithms essentially inapplicable in a
significant number of real-world applications [22]:

– The number of nodes in a cube lattice increases dra-
matically and its shape is more involved. For instance,
consider a fact table with D dimensions. If Li denotes
the number of levels of the i-th dimension, the product∏D

i=1(Li +1) gives the total number of cube nodes. This
product is greater than or equal to 2D . Equality holds for
flat data, i.e., when Li = 1,∀ i ∈ [1, D]. For example,
compare the number of nodes in Fig. 1c (flat dataset) with
the number of nodes in Fig. 7 (hierarchical dataset).

– The number of unique values in the higher levels of a
dimension hierarchy may be very small; hence, partition-
ing data into fragments that fit in memory and include all
entries of a particular value may often be impossible.

– The number of tuples that need to be stored in the cube
increases dramatically.

To overcome these problems, this paper builds upon pre-
vious work on the CURE (Cubing Using a ROLAP Engine)
algorithm [22] and develops comprehensive ROLAP solu-
tions that address efficiently the entire cube lifecycle and
can be implemented easily over existing relational servers.
These CURE-based families of algorithms provide fast com-
putation of a fully-materialized cube in compressed form,
are incrementally updateable, and exhibit fast query-response
times that can be improved by low-cost indexing and cach-
ing, even when dealing with very large datasets with arbitrary
hierarchies. The efficiency of our methods is demonstrated
through comprehensive experiments on both synthetic and
real-world datasets, whose results have shown great promise
for the performance and scalability potential of the proposed
techniques, with respect to both the size and dimensionality
of the fact table. Among the experimental results, we dis-
tinguish those that have made CURE the first ROLAP tech-
nique to complete the construction and usage of the cube
of the highest-density dataset in the APB-1 benchmark (12
GB) [26]. CURE was in fact quite efficient on this, showing
great promise with respect to the potential of the technique
itself and of ROLAP in general. CURE stretches ROLAP to
its limits, for the first time in the presence of hierarchies,
indicating that ROLAP may not be inherently inferior.
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1.2 Paper contribution and outline

With respect to cube construction, CURE contributes a novel
lattice-traversal scheme, an optimized data-partitioning
method, and a suite of relational storage schemes for all forms
of redundancy [22]. Furthermore, as shown in this paper, the
nature of hierarchies imposes additional challenges to the
every-day usage of cubes as well, making existing techniques
inapplicable for the manipulation of CURE cubes. In order
to make CURE a comprehensive solution capable of treat-
ing efficiently all phases in the lifecycle of a cube even in
the presence of hierarchies, in this paper, we further propose
novel techniques for fast query answering and incremental
maintenance over CURE cubes, providing answers to the
aforementioned challenges as well. In more detail, our main
contributions can be summarized as follows:

– Query answering: We develop an algorithm for answer-
ing arbitrary queries using an (unindexed) CURE cube
and show that its practicality is limited in real-world appli-
cations that typically involve selective queries over large
datasets. To overcome this, we investigate the effect of
indexing on CURE cubes and propose an extension of
the original algorithm that is based on low-cost indices.
We show that indexing the entire cube, which is poten-
tially very expensive in hierarchical data, is not necessary;
thanks to the particular storage format of CURE cubes,
indexing the original fact table only is enough for efficient
query processing.

– Query optimization: We examine customized query
optimization policies that use cost estimations to assess
the benefits of using an index and identify which set of
indices should be combined for a given query.

– Incremental maintenance: We study different approa-
ches to incremental maintenance of CURE cubes and con-
clude that the common, eager tactics, which refresh a
cube periodically during a dedicated window of time, are
not efficient for CURE, due to its storage format and the
nature of hierarchies. Alternatively, we propose a novel
lazy method that performs only some lightweight opera-
tions during an update and modifies the actual data only
on demand, during query processing. The additional cost
at query time is marginal, while the amortized update cost
is only a small fraction of that of the eager approach, mak-
ing the lazy approach the method of choice. To the best
of our knowledge, this is the first time a lazy method has
been employed for cube processing. Finally, we propose
a hybrid combination of the eager and the lazy method,
which is very promising under certain conditions.

The rest of this paper is organized as follows: In Sect. 2,
we offer a brief overview of related work. In Sect. 3, we
mainly focus on the storage format of CURE cubes, originally

presented elsewhere [22], which is necessary for the self-con-
tainment of this paper, since building efficient algorithms for
accessing cube data strongly depends on the storage format.
In Sect. 4, we study issues related to query processing and
optimization over CURE cubes, and, in Sect. 5, we investi-
gate incremental maintenance of CURE cubes and develop an
eager, a lazy, and a hybrid solution. Our study on algorithms
for efficient usage of CURE cubes is under the perspective
of the additional challenges imposed by hierarchies. Finally,
in Sect. 6, we present our conclusions and the directions of
our future work.

2 Related work

Cube construction has been the focus of much research due
to its importance in improving the performance of OLAP
tools. After Gray et al. [9] proposed the data cube, a plethora
of papers has been published in this area, which are well doc-
umented in the literature [24] and their detailed description
exceeds our purpose.

There are several ROLAP cubing methods proposed so far
[2,3,9,16,17,22,23,28,31,40]. Among them, BUC [3] is the
most influential method attributing its success to a very effi-
cient execution plan that enables sharing sorting costs during
construction of different nodes. BU-BST [40], QC-DFS [17],
and TRS-BUC [23] are BUC-based, i.e., they use the same
execution plan. However, they do not support hierarchies,
they have not been tested over very large data sets, and they
do not store cube tuples efficiently. CURE [22] is BUC-based
as well, while also dealing with all of these problems.

Moreover, among ROLAP cubing techniques other than
CURE, only PipeSort and PipeHash [2,31] have (superfi-
cially) discussed supporting hierarchies. Both of them,
however, represent rather straightforward and nonscalable
solutions; they have already been outperformed by all subse-
quent ROLAP methods, and neither handles efficient storage.
Hence, CURE appears to be the first ROLAP method that
studies the problem comprehensively and proposes a practi-
cal solution.

Furthermore, to the best of our knowledge, all results pub-
lished so far for ROLAP cubing algorithms other than CURE
assume that the original fact table fits in memory. Disk-based
extensions have been discussed rarely [3,28], but only for
“flat” data and without any accompanying performance
results. On the contrary, CURE’s partitioning is applicable
over very large hierarchical data, which is also shown experi-
mentally even in cases that data sizes far exceed memory.

With respect to cube-size reduction in ROLAP, Key [16],
BU-BST [40], QC- DFS [17], and TRS-BUC [23] study the
effect of removing redundant tuples from the cube. They only
focus on what to avoid storing but not on how to store the data
finally materialized. Like existing methods, CURE removes
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all kinds of redundancy but also employs efficient storage
schemes that further compress the final result. Orthogonal to
the above is the ability of BUC [3] to construct iceberg cubes,
i.e., cubes that do not store data produced by aggregation of
a small number of tuples. Being BUC-based, CURE is able
to construct iceberg cubes as well.

Hence, regarding cube construction and storage, CURE
seems to be the most promising algorithm overall in the
ROLAP framework [22]. This fact justifies the requirement
for some additional attention on its query and update
performance, which is a main topic in this paper that extends
previous work on CURE [22] in order to make it a com-
prehensive ROLAP solution that deals with all aspects of the
cube lifecycle for the first time in the presence of hierarchies.

Regarding MOLAP methods, they use multidimensional
arrays for cube construction and storage [32,42] as an alter-
native to relational materialized views. The structural differ-
ences between ROLAP and MOLAP are so marked, however,
that any application of MOLAP techniques on CURE seems
impossible.

A third category of cube-related algorithms includes meth-
ods that use graph-based structures for cube construction and
storage [8,11,15,18,30,35,41]. These structures usually act
as indices as well, generating fast query and update times with
the use of customized algorithms. Among them, Dwarf [35]
is the most promising, being able to deal with hierarchies [34]
while removing several kinds of redundancy from cube data,
which gives it polynomial scaling [36]. QC-Trees [18] have
similar redundancy-reduction capabilities as well. CURE is
the only solution in the ROLAP framework that shares some
common properties with such sophisticated methods, includ-
ing polynomial storage requirements. As explained above, a
direct comparison of CURE with methods of this category
goes beyond the scope of this paper.

Furthermore, approximation-based methods assume that
decision support does not need absolutely accurate results
and store an approximate description of the data cube, sac-
rificing accuracy for storage-space reduction. These meth-
ods use various techniques, such as wavelet transformations,
sampling, and histograms. Some examples can be found
elsewhere [1,39]. Studying them further is beyond the scope
of this paper, since we are interested in methods that produce
accurate results.

Additionally, apart from the methods that construct com-
plete cubes, there are methods that select subsets of nodes
for partial construction and others that compute only some
predefined nodes (e.g., [12,27,33,37]). As mentioned above,
selecting what to materialize is orthogonal to deciding how to
materialize it. Hence, although methods that perform partial
aggregation are interesting and their combination with CURE
seems possible, their study exceeds the scope of this paper.

Apart from the publications related to cube computation
and storage, there is also some work on cube usage, i.e., on

query answering using data stored in a cube, and on incre-
mentally updating a data cube, following the updates of the
fact table.

To the best of our knowledge, query processing over con-
densed ROLAP cubes has been studied for two algorithms,
BU-BST [7,40] and TRS-BUC [23]. Interestingly, neither of
them supports hierarchies. The solution proposed for the for-
mer is based on indexing the entire data cube. However, the
additional cost of indexing all cube nodes is considerable and
the situation would be even worse in the presence of hierar-
chies, since the number of nodes increases dramatically. On
the other hand, TRS-BUC identifies and compresses some
types of redundant tuples also identified by CURE. Accord-
ing to the terminology of CURE, originally defined elsewhere
[22] and briefly described in Sect. 3.1, these redundant tuples
are called Trivial Tuples (TTs) and are stored as row-id ref-
erences pointing to tuples in the original fact table R. Based
on this property of TTs, the creators of TRS-BUC have first
proposed indexing only R, an idea beneficial for CURE as
well to an even greater extent, since every tuple stored in
CURE actually uses row-id references to R (not only TTs).
Hence, here we apply essentially the same indexing tech-
nique, further enhanced by a query optimization method not
discussed there. Specialized query optimization based on
expected access costs is mandatory for CURE due to the
existence of hierarchies, since many dimensions have small
domains. As a consequence, a large number of tuples in R
may have the same value in a particular dimension making
the use of an index costly.

Regarding the incremental maintenance of a cube, most
solutions follow the paradigm of Mumick et al. [25], who
first proposed separating the process into two phases: prop-
agation, during which the delta cube is constructed, and
refresh, during which the original and the delta cube are
merged. Recently, a general method for updating (uncom-
pressed) cubes has been proposed [19], based on selecting
particular nodes of the delta cube for construction during
propagation. This method identifies propagation as the dom-
inating factor during update and tries to optimize it. On
the contrary, we have seen that constructing a compressed
delta cube using CURE is very fast and that the dominat-
ing process is refresh; hence, although combining our meth-
ods with smarter propagation seems possible, here we focus
on refresh. Interestingly, existing methods proposed for the
refresh phase of condensed ROLAP cubes are not applica-
ble in the case of CURE, due to the additional complications
imposed by its high compression rate and mainly the exis-
tence of hierarchies. In particular, refreshing a BU-BST cube
[7] is again based on indexing the entire cube, a solution
already rejected as impractical for CURE cubes. Further-
more, refreshing QC-Tables (cubes constructed by QC-DFS)
[20,21] or TRS-BUC cubes [23] is based on brute-force scan-
ning or decompressing the entire cube, respectively; both
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methods are very expensive, and the situation would be worse
for the case of CURE cubes.

3 Cube storage

Any algorithm that uses data stored in a cube depends on the
storage format produced by the algorithm that constructed
the cube, since the storage format affects the access methods
that can be applied. Hence, in this section, we provide an
overview of the storage format produced by CURE, which
has been originally presented elsewhere [22]. Based on it,
in the following sections, we present specialized algorithms
for querying and updating CURE cubes in the presence of
hierarchies.

3.1 Storage format

First Kotsis and McGregor [16] and then several other
researchers [8,17,18,23,35,40] have realized that a great por-
tion of the data in a cube is redundant. They have used terms
like prefix/suffix/partial/total redundancy, equivalent tuples,
or base-single-tuples (BSTs). A detailed description of these
terms exceeds our purpose. Alternatively, in an attempt to
express all these terms under a global definition, we state
that a value that is stored in a data cube is called redundant
if it is repeated in the same attribute elsewhere in the cube
as well [22]. According to this, we can generally recognize
two types of redundancy: Dimensional redundancy appears
whenever a specific dimension value is repeated in different
tuples. Aggregational redundancy appears whenever a spe-
cific aggregate value is repeated in different tuples.

Removing redundant data produces a smaller cube and
benefits computational efficiency as well, since smaller cubes
require fewer aggregations and induce smaller output costs.
However, avoiding redundancy is not the only factor that
affects cube size. Another equally important factor concerns
the storage format of nonredundant data. CURE strikes on
both factors, avoiding the storage of redundancy, while stor-
ing nonredundant data in a very compact relational form.
Note that storing tuples efficiently is more critical in hierar-
chical cubes, since they consist of more nodes and of denser
areas at coarse-grained levels, which generate large numbers
of nonredundant tuples. Below, we describe CURE’s efficient
storage format of nonredundant data.

Most existing ROLAP methods that identify redundancy
use a single D-dimensional relation for storing nonredun-
dant data, which introduces a large number of NULL val-
ues for tuples that belong to nodes of lower dimensionality.
Instead, CURE follows the example of TRS-BUC [23] and
stores tuples separately, according to the node they belong
to. Every such tuple t stored in a cube node N has been pro-
duced by the aggregation of a tuple set S in the original fact

Dim1 … DimX Aggr1 … AggrY

Fig. 2 Basic tuple format

(a) R-rowid Aggr1 … AggrY (b) R-rowid

Fig. 3 Normal and trivial tuple formats

table (say R). Hence, without further optimizations, t should
be stored as shown in Fig. 2, assuming that it consists of X
dimensions and Y aggregates.

Clearly, t has the same dimension values with every tuple
tS ∈ S projected on the grouping attributes of N; hence, every
cube tuple is dimensionally redundant. To overcome this,
CURE replaces all dimension values of t with a row-id refer-
ence (R-rowid), pointing to any tS ∈ S (Fig. 3a). In our imple-
mentation, R-rowid stores the minimum row-id of the tuples
in S. Note that replacing dimension values by a row-id is use-
ful only if the size of the former is smaller than the size of the
latter. This may not be true for tuples that belong to nodes of
one or two dimensions. Assume for example a node consist-
ing of a single two-byte dimension (say of type ‘small inte-
ger’). If a row-id reference is four bytes long, the basic tuple
format of Fig. 2 for this case is more compact than the for-
mat of Fig. 3a, since Dim1 would take 2 bytes/tuple, whereas
R-rowid would take 4 bytes/tuple. Such nodes, however, are
few and relatively small compared to more detailed nodes
at higher lattice levels. Hence, although CURE can decide
dynamically which format is preferable, the cases when the
storage of redundant data is beneficial are so rare and the
benefits so small, that CURE treats them uniformly with the
others. Moreover, note that CURE uses row-ids not only for
the efficient storage of some tuples, as performed by TRS-
BUC for the so-called totally-redundant tuples only [23], but
for all tuples, since dimensional redundancy exists in every
cube tuple.

Having dealt with dimensionally redundant data, CURE
further focuses on aggregational redundancy in order to apply
additional optimizations. As described below, CURE classi-
fies cube tuples into three categories, according to the type
of aggregational redundancy they contain, and uses (at most)
three tables per node, one for each category. Their schema is
described below.

Normal tuples (NTs): A tuple t is called normal if it is only
dimensionally but not aggregationally redundant. The most
compact format for NTs is the one of Fig. 3a, since CURE
cannot avoid storing the aggregates. For example, if Fig. 4a
shows the tuples stored in R and Fig. 4b shows the corre-
sponding cube (in an uncompressed form), then tuple 〈3, 90〉
in node A is an NT, since there is no other tuple in the entire
cube with an aggregate value equal to 90.
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A B C M
1 1 1 10
1 1 2 20
2 2 3 40
3 2 1 45
3 3 3 45

A B C M
1 1 1 10
1 1 2 20
2 2 3 40
3 2 1 45
3 3 3 45

A B M A C M B C M
1 1 30 1 1 10 1 1 10
2 2 40 1 2 20 1 2 20
3 2 45 2 3 40 2 3 40
3 3 45 3 1 45 2 1 45

3 3 45 3 3 45

A M B M C M
1 30 1 30 1 55
2 40 2 85 2 20
3 90 3 45 3 85

M
160

(a) Fact Table R

(b) Cube of R

Fig. 4 Fact table R and its uncompressed cube

Trivial tuples (TTs): If t comes from a singleton set S (|S| =
1), no aggregation is necessary for its computation, but just
a simple projection of the sole tS ∈ S on N’s grouping attri-
butes. In this case, t is called trivial. Note that, if t is trivial,
its aggregate values are equal to the measures of tS , hence
TTs are aggregationally redundant and their aggregates can
be retrieved from the original tuple they come from. Hence,
TTs can be minimally stored using just row-ids and discard-
ing all aggregate values (Fig. 3b).

Interestingly, it can be proven that a TT that belongs to N
belongs also to all the ancestor nodes of N in the cube lattice,
since it comes from the simple projection of a single tuple
that has not matched with any other tuples in the original
fact table and hence cannot match either for the generation
of a more detailed tuple. This property holds for hierarchi-
cal cube lattices as well, hence also for CURE’s execution
plan (an example of such a plan appears in Fig. 7), which is
a pruned lattice. This is beneficial, since it means that any
TT can be stored once, only in the least detailed node NLD it
belongs to, and be shared among this node and its ancestors
that form an entire subtree rooted at NLD. In the example
of Fig. 4b, all cube tuples with value A = 2 are TTs, since
they have been produced by a simple projection of the single
tuple 〈2, 2, 3, 40〉 in R. Storing only one TT in node A (the
least detailed one) is enough to represent them all, due to the
property mentioned above. This tuple can then be considered
as shared among nodes A, AB, AC, and ABC (that form an
entire subtree rooted at A) and can be easily retrieved on
demand.

Note that TTs are similar to BSTs and totally redundant
tuples recognized by BU-BST [40] and TRS-BUC [23],
respectively; however, they are stored far more efficiently.

Common aggregate tuples (CATs): A tuple t is called
CAT, if it is aggregationally redundant and nontrivial
(|S| >1). By definition, there must be at least one more CAT
t′ such that t and t′ have common aggregate values. The
existence of CATs can be attributed to two reasons, namely
common source and coincidence:

AGGREGATES

R-rowid Aggr1 … AggrY

A-rowid A-rowid

Fig. 5 Format of relation AGGREGATES and of CATs

– Common source CATs attribute equality of their aggre-
gates to the fact that they have been produced by the same
set of tuples of the fact table. In Fig. 4b, tuples 〈1, 1, 30〉
in AB, 〈1, 30〉 in A, and 〈1, 30〉 in B are common source
CATs, since they have been produced by the same tuple
set S ={〈1, 1, 1, 10〉, 〈1, 1, 2, 20〉} of R.

– Coincidental CATs are the CATs that have the same
aggregates, although they have been produced by differ-
ent tuple sets of the fact table. In Fig. 4b, tuples 〈2, 85〉
in B and 〈3, 85〉 in C are examples of coincidental CATs.

To avoid storing the aggregate values of CATs redun-
dantly, CURE uses an additional relation AGGREGATES to
store such common values only once and replaces all aggre-
gate values in CATs with a row-id (A-rowid) pointing to the
corresponding tuple in AGGREGATES. The specific schema
chosen for AGGREGATES depends on the type of CATs that
prevails. As explained elsewhere [22], the format shown in
Fig. 5 produces a more compact cube, if common source
CATs prevail. Since this is the most common case, in the rest
of this paper we use this format. For more details on the other
possible formats, please refer elsewhere [22].

For example, omitting the details of construction [22], the
CURE cube of R in Fig. 4a appears in Fig. 6. Note that this
cube contains the same information like the uncompressed
cube of R in Fig. 4b, albeit stored in a much more compact
format. In order to decompress the data of a specific node and
restore the original information, we have to follow R-rowid
and A-rowid references, and fetch the corresponding tuples
in relations R and AGGREGATES, respectively. Then, in the
former case we only need to project every tuple fetched from
R on the grouping attributes of the node queried, while in
the latter we first need to follow an additional R-rowid found
in every tuple fetched from AGGREGATES before that. For
instance, node A (Fig. 6) has three tuples in total, one of every
category. In order to decompress the tuple 〈4, 90〉 stored in
A-NT, we fetch the tuple in R with R-rowid 4 (i.e., tuple
〈3, 2, 1, 45〉) and project it on A. Combining the resulting
dimension value A = 3 with the aggregate value M = 90
stored in A-NT, we generate tuple 〈3, 90〉 (the third tuple
of node A in Fig. 4b). Similarly, the tuple stored in A-TT
indicates that we have to fetch the tuple with R-rowid 3 in R
(i.e., tuple 〈2, 2, 3, 40〉). Since we restore a TT, we need to
reconstruct the aggregate value as well; hence, we project the
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Fig. 6 Fact table R and its
CURE cube

Fact Table R
-rowid A B C M

1 1 1 1 10
2 1 1 2 20
3 2 2 3 40
4 3 2 1 45
5 3 3 3 45

AGGREGATES
A-rowid R-rowid M

1 1 30
2 3 85

ABC-NT ABC-TT ABC-CAT
R-rowid M R-rowid A-rowid

1
2

AB-NT AB-TT AB-CAT AC-NT AC-TT AC-CAT BC-NT BC-TT BC-CAT
R-rowid M R-rowid A-rowid R-rowid M R-rowid A-rowid R-rowid M R-rowid A-rowid

4 1
25 2

11

34
45

A-NT A-TT A-CAT B-NT B-TT B-CAT C-NT C-TT C-CAT
R-rowid M R-rowid A-rowid R-rowid M R-rowid A-rowid R-rowid M R-rowid A-rowid

4 90 3 1 5 1 1 55 2 2
2

∅∅∅∅-NT ∅∅∅∅-TT ∅∅∅∅-CAT
R-rowid M R-rowid A-rowid

1 160

tuple fetched on both A and M and generate tuple 〈2, 40〉 (the
second tuple of node A in Fig. 4b). Finally, the tuple stored in
A-CAT indicates that we have to fetch the tuple with A-rowid
1 in relation AGGREGATES (i.e., tuple 〈1, 30〉). The latter
specifies that we need to fetch the tuple with R-rowid 1 in R
(i.e., 〈1, 1, 1, 10〉) and project it on A. Combining the result-
ing dimension value A = 1 with the aggregate value M = 30
found in the tuple fetched from relation AGGREGATES we
generate tuple 〈1, 30〉 (the first tuple in node A of Fig. 4b).

Interestingly, CURE stores a TT only in the most special-
ized node NS it belongs to and considers it shared among NS

and its ancestors in the cube lattice that have the grouping
attributes of NS as a prefix. In Fig. 6 for example, the TT
stored in node A-TT belongs to node A and, indirectly, to
nodes that have A as a prefix, namely AB, AC, and ABC.
Note that none of them stores this TT physically, since this
would be redundant. Therefore, during query answering over
a node N, additionally accessing TTs of some of N’s descen-
dants is necessary. If N has X grouping attributes, then the
total number of TT relations that need to be accessed is X +1.
These are the TT relations of N itself and of all nodes that
come up by removing the rightmost attribute iteratively. For
example, restoring TTs of node ABC requires accessing rela-
tions ABC-TT, AB-TT, A-TT, and ∅-TT in Fig. 6.

Finally, in order to further enhance CURE’s efficiency we
can use several implementation variations. For example, if
the ROLAP server supports bitmap indexing, which is com-
mon, we can change the format of relations TT and CAT
without affecting ROLAP compatibility. Instead of storing
each row-id (which consumes several bytes) separately, we
can use such a bitmap to index the tuples that need to be
retrieved for answering queries on the corresponding node N.
Furthermore, we have seen that it is beneficial to sort all
row-ids in TT relations according to the order of the tuples
they point at. This produces sequential scans during query
answering. Our experiments have shown that such a sort-
ing operation is inexpensive compared to the cube-construc-
tion time and results into great savings during cube usage.
Note that the use of bitmap indices achieves such a sorting
indirectly.

A2B1

B1

∅

A2 C0

A1 A2C0 B0 B1C0

A0 A1B1 A1C0 A2B0 B0C0A2B1C0

A0B1 A0C0 A1B0 A1B1C0 A2B0C0

A0B0 A0B1C0 A1B0C0

A0B0C0

Fig. 7 The hierarchical execution plan of CURE

3.2 Construction and tuple classification algorithm

First constructing an uncompressed cube and then compress-
ing it according to the aforementioned format would be inef-
ficient. To avoid such performance penalties, CURE uses a
specialized data structure, called signature pool, and a cus-
tomized algorithm that classifies cube tuples into the proper
class (NT, TT, or CAT) during construction [22]. Moreover, it
applies several advanced techniques in order to deal with the
challenges introduced by the nature of hierarchies [22]: (a) It
traverses efficiently an extended lattice that includes dimen-
sion hierarchy levels, which enables pipelining and extensive
sharing of sorting costs. Assume, for example, that the dimen-
sions of the fact table R (Fig. 4a) are organized in hierarchies
as follows: A0→ A1→A2, B0→B1, and C0. Then, Fig. 7
presents the execution plan of CURE. (b) It introduces an
efficient algorithm for partitioning fact tables that store hier-
archical data of any size into memory-fitting segments. (c) It
captures all types of redundancy and uses alternative schemes
for storing nonredundant data efficiently, as described above.

Further details related to the CURE construction algo-
rithm are beyond the scope of this paper and can be found
elsewhere [22]. For the sake of self-containment, we simply
repeat below the most indicative experimental results orig-
inally presented in the introductory publication of CURE
[22].
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In particular, we have experimented with the behavior of
CURE and CURE+ under different conditions, and we have
compared1 their performance against the most efficient meth-
ods in ROLAP, namely BUC [3], BU-BST [40], BU-BST+
[7], and TRS-BUC [23]. CURE+ is a variation of CURE that
applies a post-processing step to sort and replace row-ids
with bitmap indices, as explained in Sect. 3.1. Furthermore,
BU-BST+ is a variation of BU-BST that has actually been
implemented as well at some point [7] and further incor-
porates the relatively straightforward storage of cube nodes
as separate views instead of using a single monolithic rela-
tion for the entire cube. We have not implemented QC-DFS,
another BUC-based algorithm proposed in the existing liter-
ature [17], since the relational representation of the so-called
Quotient Cubes it constructs has been shown to have many
problems [18]. This can be solved with the use of QC-Trees
[18], but these are graph-based data structures and, hence,
outside the scope of this paper. Note that, among the algo-
rithms we have implemented, BUC identifies no redundancy,
whereas BU-BST, BU-BST+, and TRS-BUC identify some
redundancy, TTs in particular; nevertheless, none of them
uses efficient storage for nonredundant data as CURE and
CURE+ do.

We present the most indicative results of our experimen-
tal evaluation related to cube construction and storage. Note
that, in the following analysis of the experimental results,
we mainly focus on the behavior of CURE and CURE+. An
extensive analysis of the behavior of the other algorithms is
beyond the scope of this paper and can be found elsewhere
[23].

Flat cubes: In our first set of experiments we have evaluated
the efficiency of all algorithms in constructing flat cubes.
We have experimented with two widely used real-world
datasets, namely CovType [4] and Sep85L [10]. CovType
describes forest cover-type data and consists of 10 dimen-
sions and 581,012 tuples. Its dimensions and their cardi-
nalities are as follows: Horizontal-Distance-To-Fire-Points
(5,827), Horizontal-Distance-To-Roadways (5,785), Eleva-
tion (1,978), Vertical-Distance-To-Hydrology (700),
Horizontal-Distance-To-Hydrology (551), Aspect (361),
Hillshade-3pm (255), Hillshade-9am (207), Hillshade-Noon
(185), and Slope (67). Sep85L describes surface synoptic
weather reports and consists of 9 dimensions and 1,015,367
tuples. Its dimensions and their cardinalities are as follows:
Station-Id (7,037), Longitude (352), Solar-Altitude (179),
Latitude (152), Present-Weather (101), Day (30), Weather-
Change-Code (10), Hour (8), and Brightness (2). In both
datasets, we have arranged the dimensions in a decreasing

1 Since, among these methods, CURE and CURE+ are the only ones
that support hierarchies, such a comparison is meaningful on flat data-
sets only.

Fig. 8 Construction time (real datasets)

Fig. 9 Storage space (real datasets)

cardinality order, for greater efficiency, as proposed else-
where [3] and verified in early experimentation.

Figure 8 shows the time spent on the construction of the
corresponding cubes, and Fig. 9 their storage space require-
ments. Note that in both datasets the size of the cubes con-
structed by CURE and especially CURE+ is much smaller
than the sizes of the cubes of the other formats. Interestingly,
the size of CURE+ cubes is approximately six to ten times
(10–20 times, respectively) smaller than the size of the corre-
sponding TRS-BUC cubes (BU-BST+ cubes, respectively).
CURE and CURE+ attribute their storage efficiency to that
they remove all types of redundancy and mainly to the effi-
cient schema they use for nonredundant data. With respect
to time, CURE seems to be very close to TRS-BUC. There
are essentially two contradictory factors that decide their rel-
ative performance. On the one hand, TRS-BUC is simpler;
it identifies only some types of redundancy, and does not
spend any time on operations like sorting signatures stored
in a signature pool, as CURE does. Such lightweight behavior
gives an advantage to TRS-BUC. On the other hand, TRS-
BUC stores a larger cube; therefore, it pays greater output
costs. Such behavior gives it a disadvantage. The relative
impact of these contradictory factors makes TRS-BUC a little
faster than CURE in CovType, but a little slower in Sep85L.

123



266 K. Morfonios, Y. Ioannidis

Fig. 10 Construction time (APB-1)

Moreover, expectedly, CURE+ is always a little slower than
CURE, paying the additional penalty of the post-processing
step. Nevertheless, the small penalty in construction time is
compensated by great storage savings (also by greater effi-
ciency in answering queries, as shown in the next section);
thus, we consider it negligible compared to the improvements
it offers.

Hierarchical cubes: In this set of experiments, we have eval-
uated the efficiency of CURE/CURE+ in constructing hierar-
chical cubes. Recall that the other BUC-based methods that
we have used for comparison above do not support hierar-
chies; hence, they are omitted. The datasets we have used
are synthetic and have been produced by the data generator
of the APB-1 benchmark [26], which is a standard in OLAP
[38]. The generated fact table has two measures (Unit Sales
and Dollar Sales) and four dimensions organized in hierar-
chies as follows (in parenthesis we show the corresponding
cardinalities). Product: Code (6,500)→Class (435)→Group
(215)→Family (54)→Line (11)→Division (3), Customer:
Store (640)→Retailer (71), Time: Month (17)→Quarter
(6)→Year (2), and Channel: Base (9). The size of the fact
table is tuned by a density factor varying between 0.1 and 40.
The lowest density factor generates a fact table consisting of
1,239,300 tuples occupying approximately 30 MB (in binary
format). The same figures for the highest density factor are
400 times larger (495,720,000 tuples and 12 GB). The total
number of nodes in the cube is (6+1)×(2+1)×(3+1)×(1+1)
= 168. Note that the base-level cardinality of all dimensions
is very low; this implies that any naive partitioning algorithm
would fail. However, the partitioning algorithm of CURE is
able to handle this case smoothly.

Figures 10 and 11 show the construction time and the stor-
age space, respectively, for a low (0.4), a medium (4), and
the highest possible (40) density factor. The values along the
x-axis, which is logarithmic, indicate the number of tuples
in the corresponding fact tables. Evidently, both CURE and

Fig. 11 Storage space (APB-1)

Fig. 12 Flat versus hierarchical cube: construction time

CURE+ scale very well, attributing their performance in the
efficient execution plan, the external partitioning algorithm,
and the effective storage format they use, which reduces out-
put costs. Constructing a full hierarchical cube for an APB-1
dataset in its highest density factor in approximately 3.5 h
using very limited resources (256 MB of memory) is impres-
sive. With respect to storage space, CURE+ is the winner
constructing a cube that occupies 6.86 GB (recall that the
original fact table size has been 12 GB).

Moreover, we have investigated the tradeoffs between con-
structing flat (only at the finest level of detail) and hierarchi-
cal cubes over hierarchical data. The dataset we have used is
APB-1 with density factor 0.4, which fits in memory. FCURE
is the version of CURE that generates flat cubes ignoring
hierarchies. Clearly, the construction of a flat cube is faster
(Fig. 12) and occupies less storage space (Fig. 13); how-
ever, as we will show in Sect. 4.2, a hierarchical cube offers
greater advantages in answering roll-up/drill-down queries
fast. Hence, the overall tradeoff seems to be in favor of hier-
archical cubes.
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Fig. 13 Flat versus hierarchical cube: storage space

4 Query answering

In the previous section, we focused on the highly compressed
storage format produced by CURE, a ROLAP algorithm that
constructs efficiently complete cubes over large datasets with
arbitrary hierarchies. In order to make CURE a comprehen-
sive solution capable of dealing with all phases in the cube
lifecycle, in this and the following section, we study algo-
rithms for efficient usage of CURE cubes, i.e., algorithms for
query answering and incremental maintenance. Interestingly,
as shown below, existing techniques for cube usage are not
practical if applied over CURE cubes, due to CURE’s high
compression rate and mainly due to the additional challenges
imposed by the existence of hierarchies. In order to overcome
this problem, in this section, we study customized methods
for efficient queries on top of CURE cubes, and in the fol-
lowing section, we study novel update algorithms, including
some lazy policies never applied in techniques associated
with cubes before, and demonstrate the effectiveness of our
solutions through experiments on both real-world and syn-
thetic datasets.

4.1 Querying unindexed CURE cubes

Based on the storage format of CURE presented in Sect. 3.1,
we develop an algorithm for answering group-by queries
on top of unindexed CURE cubes (Algorithm 1), namely
QU-CURE (Query Unindexed CURE). A general form of a
group-by query that can be answered using a data cube is the
following:

SELECT S1, S2,…, Sn, f(M)
FROM R
WHERE W1 op1 v1 AND …AND Wk opk vk

GROUP BY S1, S2,…, Sn

HAVING f(M) op v

Algorithm 1 QU-CURE(R, AGG/TES, N, Cond)
1: for each tuple t in relation N-NT do
2: if t.aggr satisfies Cond then
3: Fetch tuple tR from R indicated by t.R-rowid;
4: if tR .dim satisfies Cond then
5: tout .dim = Project(tR , N);
6: tout .aggr = t.aggr;
7: Output(tout );
8: end if
9: end if
10: end for
11: for each descendant node ND of N (including N itself) whose

grouping attributes are a prefix of the grouping attributes of N do
12: for each tuple t in relation ND-TT do
13: Fetch tuple tR from R indicated by t.R-rowid;
14: if tR .aggr satisfies Cond and tR .dim satisfies Cond then
15: tout .dim = Project(tR , N);
16: tout .aggr = tR .aggr;
17: Output(tout );
18: end if
19: end for
20: end for
21: for each tuple t in relation N-CAT do
22: Fetch tuple tA from AGGREGATES indicated by t.A-rowid;
23: if tA.aggr satisfies Cond then
24: Fetch tuple tR from R indicated by tA.R-rowid;
25: if tR .dim satisfies Cond then
26: tout .dim = Project(tR , N);
27: tout .aggr = tA.aggr;
28: Output(tout );
29: end if
30: end if
31: end for

In this query, f is an aggregate function, assumed to be iden-
tical to the aggregate function used in the cube construction.
Also S = {S1, . . . , Sn} is the subset of dimensions of the
original fact table R participating in the GROUP BY clause
and W = {W1, . . . , Wk} is the subset of the ones partici-
pating in the WHERE clause. Clearly, the most specialized
node N that needs to be accessed for such a query is the one
with grouping attributes S ∪ W . If W ⊆ S, then S ∪ W = S,
so the node with S as its grouping attributes holds all infor-
mation necessary to answer the query and no aggregation
needs to be performed at query time. Otherwise, selection on
the dimensions in W must be performed on the node with
S ∪ W as its grouping attributes and the tuples selected must
be aggregated and projected on S to produce the result. In
our study, we assume that the dimension set in the WHERE
clause of a given query is a subset of the dimension set in the
SELECT clause (W ⊆ S); otherwise, a step of postaggre-
gation would be necessary. We omit this step, since it adds
nothing to the intuition of the algorithm. The input param-
eters of QU-CURE consist of the fact table R, the relation
AGGREGATES, the cube node queried N, and an expression
Cond that indicates selection conditions, as expressed by the
WHERE and HAVING clauses in SQL syntax.
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QU-CURE consists of three phases, one for each category
of tuples. In the first phase (lines 1–10) it processes NTs by
accessing every tuple t in the NT relation of N (line 1) and
checking whether the aggregate values of t (t.aggr) satisfy the
condition Cond (line 2). If they do, the algorithm fetches the
tuple tR from R indicated by the row-id stored in t (t.R-rowid)
(line 3) and then, it checks whether the dimension values of
tR (tR .dim) satisfy the condition Cond (line 4). If the answer
is positive, the algorithm has found a new tuple (tout ) that
qualifies the selection criteria imposed by the original query
and hence writes it in the output (line 7). The dimension val-
ues of tout come from the projection of tR on the grouping
attributes of N (line 5), while the aggregate values from the
normal tuple t (line 6).

In the subsequent phases the algorithm processes TTs
(lines 11–20) and CATs (lines 21–31). The steps are simi-
lar to these of phase 1; hence, we do not explain them here
in detail. Just note that, in phase 2, the algorithm accesses
TTs not only in the TT relation of node N, but also in the TT
relations of all of its descendants in the cube lattice whose
grouping attributes are a prefix of the grouping attributes of
N (line 11). As described in Sect. 3.1, this is attributed to
that CURE stores TTs only in the most specialized node they
belong to.

4.2 Experimental evaluation for the unindexed case

Clearly, the performance of cube usage is tightly coupled
with the underlying format used for cube storage. In order
to evaluate the quality of the storage format of CURE with
respect to query answering and the efficiency of the proposed
technique for answering queries over CURE cubes, we have
implemented QU-CURE, and compared the query-response
times it generates with the query-response times generated by
the cube formats of the best algorithms among CURE’s RO-
LAP competitors, namely BUC [3], BU-BST [40], BU-BST+
[7], and TRS-BUC [23]. These are the same algorithms also
used for comparison in Sect. 3.2. In this subsection, we pres-
ent the results of our experimental evaluation on answering
node queries, which are queries that contain no WHERE part
in their SQL syntax. Clearly, such queries cannot be accel-
erated by indexing. More selective queries, which contain a
WHERE part and can be accelerated by indices, will be the
subject of the following subsections.

Flat cubes: In our first set of experiments we have evaluated
the efficiency of the cube formats generated by the afore-
mentioned methods in query answering. Such an evaluation
is clearly important, since condensing a cube is pointless if
it cannot provide fast query-response times. The workloads
we have used consist of 1,000 random node queries, which
perform no selection. Once more we have experimented with
CovType [4] and Sep85L [10], the two real-world datasets

Fig. 14 Average QRT versus storage space (CovType)

Fig. 15 Average QRT versus storage space (Sep85L)

we have also used in Sect. 3.2. Figures 14 and 15 show
the average query-response times of all algorithms for the
aforementioned workloads with respect to the storage-space
requirements of each algorithm (presented in a logarithmic
scale). In other words, these figures indicate query perfor-
mance as a function of the resources consumed by the differ-
ent algorithms. In these figures, we have excluded BU-BST,
since it resides outside the scale of the graphs. Clearly, these
graphs indicate that CURE and CURE+ are the undisputed
winners, since they achieve the best query-response times,
while consuming remarkably less storage resources. In more
detail, CURE and especially CURE+ exhibit the best per-
formance with respect to query answering, outperforming
TRS-BUC, the method of choice so far in the existing lit-
erature [23]. The reason is that CURE uses row-ids for all
types of tuples, not only for TTs, as TRS-BUC does. Hence,
it redirects all disk accesses (not only some) to a single rela-
tion and can, therefore, exploit caching to a greater extent (the
effect of caching has been studied elsewhere [22]). CURE+
is even better, because it stores row-ids in a sorted fash-
ion, producing sequential scans and greater locality of refer-
ence. Hence, we conclude that its great storage savings and

123



Revisiting the cube lifecycle 269

Fig. 16 Average QRT (APB-1 density factor 4)

efficiency in answering queries compensates the small pen-
alty in construction time.

Hierarchical cubes: In this set of experiments, we have eval-
uated the efficiency of the storage formats of CURE and
CURE+ in query answering over hierarchical cubes. Recall
that the other methods used for comparison above do not sup-
port hierarchies. The datasets we have used have been once
again produced by the data generator of the APB-1 bench-
mark [26], which is a standard in OLAP [38], as explained
in Sect. 3.2.

Figure 16 illustrates the average query-response times for
CURE and CURE+ under a workload of all possible (168)
node queries in APB-1 with density factor 4 separated into
ten equal-sized sets that have been produced by ordering the
queries according to the number of tuples they return. The
first set contains the 17 smallest queries and so on. Both axes
are logarithmic; this fact hides the advantage of CURE+ over
CURE.

Note that both CURE and CURE+ cubes take less than 1 s
on average to answer 30% of all node queries possible and
less than 10 seconds for 60% (that return up to 105 tuples).
Such query-response times should be considered very fast
for heavy workloads like the ones described here. Note that
while testing our software we have used a widely accepted
commercial database server, which has taken 12 h to answer
20 small and moderate queries, whose maximum result size
has been 534,654 tuples. Note also that queries with smaller
results, which can be answered very efficiently, have more
practical interest for analysts, since they are easier to inter-
pret. On the contrary, queries that return many millions of
tuples are impractical and would be more interesting if they
were combined with some selection of specific ranges (accel-
erated by indexing techniques). The study of such range que-
ries is the topic of the following subsections. Our experiments
with APB-1 in density factor 40 have shown similar trends;
hence, they are not explicitly shown. Furthermore, expect-

Fig. 17 Flat versus hierarchical cube: average QRT

edly, in APB-1 with density factor 0.4, whose fact table fits
in main memory, the results have been orders of magnitude
better, due to caching.

Finally, we have further investigated the tradeoffs between
constructing flat (only at the finest level of detail) and hier-
archical cubes over hierarchical data (Fig. 17). The data-
set we have used is APB-1 with density factor 0.4, which
fits in memory. FCURE is the version of CURE that gen-
erates flat cubes ignoring hierarchies, as also explained in
Sect. 3.2. Clearly, although the construction of a flat cube is
faster and occupies less storage space (as shown in Figs. 12
and 13, respectively, in Sect. 3.2), a hierarchical cube offers
greater advantages in answering roll-up/drill-down queries.
The corresponding response times produced by querying the
hierarchical cubes are approximately two orders of magni-
tude faster than the response times over the other formats
(Fig. 17). Such behavior gives us strong evidence that the
overall tradeoff is in favor of hierarchical cubes, since query
answering is associated with the every-day usage of a data
cube, whereas cube construction is an off-line procedure.

4.3 Querying indexed CURE cubes

In Sect. 4.1, we presented an algorithm for query answering
over CURE cubes that relies on brute-force scanning of tuples
that belong to the queried node N without using indices in
order to accelerate selective queries. Clearly, as also shown
in the experimental evaluation of Sect. 4.2, this algorithm can
be fast only if N contains a small number of tuples, which
induces a small number of disk seeks, or if the fact table
R is small enough, which enables caching a considerable
portion of it in main memory. However, such conditions do
not always hold in real-world applications; hence, we need
to develop a better solution, which is the topic of the rest of
this section.
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In order to reduce I/O costs during query answering, we
have to adopt the use of indices for filtering out tuples that do
not satisfy selection criteria without accessing them. How-
ever, indexing an entire cube (performed by others [7]) is
not a panacea due to the considerable overhead it adds in
terms of computational and storage costs, as also shown else-
where [23]. Note that the overhead of indexing an entire cube
becomes even greater when data is organized in hierarchies,
because, in this case, the number of cube nodes increases
dramatically. Hence, our primary design goal is to acceler-
ate arbitrary selective queries over a CURE cube without
building indices on top of every node. Moreover, we wish to
maintain the advantages of ROLAP compatibility of CURE
by using common index structures implemented in relational
engines, e.g., B+-Trees and bitmap indices.

Towards this end, a careful study of QU-CURE
(Algorithm 1) indicates that the most expensive operation
during query answering over a CURE cube involves fetching
tuples from the fact table R (lines 3, 13, 24). Clearly, R is
considerably larger than any cube node, since it holds at least
as many tuples as they do (and usually many more), whose
size in bytes is several times larger than any cube tuple, given
that CURE stores tuples compactly (Fig. 6). Thus, randomly
accessing tuples in R can generate long disk seeks. Note that
due to that CURE rejects dimensional redundancy from the
cube, as described above, restoring any cube tuple requires
accessing R, which makes such expensive operations very
common and threatens performance overall.

Based on that the main bottleneck in query answering over
CURE cubes is the access of tuples in R, we propose indexing
solely R (in the spirit of TRS-BUC [23]) in order to filter out
early during query processing a large number of such opera-
tions. By doing so, we achieve our primary goal to accelerate
arbitrary selective queries over any node, without indexing
the entire cube. Actually, this solution does not index the
cube, but only R, which is not a part of the cube. Interestingly,
the fact that R may be already indexed for other purposes
generates potentials for efficient reuse of existing resources.
Note that indexing R in the case of TRS-BUC cubes acceler-
ates only the access of TTs (called totally-redundant tuples
in the context of TRS-BUC), since they are the only type of
tuples substituted with row-ids in the corresponding format
[23]. On the contrary, the advanced storage format of CURE
uses row-ids for all types of tuples; hence, the benefits from
indexing only R are expectedly larger for CURE cubes.

For indexing the fact table, we can use any ROLAP com-
patible method. In this paper, we have used a method, which
has been found efficient elsewhere [23]. Figure 18 illustrates
an example of indexing R (the fact table in Fig. 4a), based on
it. According to this solution, if D is the number of dimen-
sions of R, we construct D separate B+-Trees, one for each
dimension. This enables later combining any subset of them
for answering arbitrary queries over any cube node. (The use

Fact Table R
R-rowid A B C M

1 1 1 1 10
2 1 1 2 20
3 2 2 3 40
4 3 2 1 45
5 3 3 3 35

<1, > <2, > <3, >

1
1
0
0
0

0
0
1
0
0

0
0
0
1
1

A
<1, > <2, > <3, >

1
1
0
0
0

0
0
1
1
0

0
0
0
0
1

B
<1, > <2, > <3, >

1
0
0
1
0

0
1
0
0
0

0
0
1
0
1

C

Fig. 18 Example of indexing R

of such combinations is the topic of the following subsec-
tion). At the leaf level of the B+-Tree of dimension ∆, we
associate every value δi in the domain of ∆ with a bitmap
vector indicating the tuples in R with ∆ = δi . We physically
store such bitmap vectors in a compressed format. For more
details, please refer elsewhere [23].

Algorithm 2 QI-CURE(R, AGG/TES, N, Cond, RS)
1: for each tuple t in relation N-NT do
2: if t.R-rowid belongs to RS and t.aggr satisfies Cond then
3: Fetch tuple tR from R indicated by t.R-rowid;
4: if tR .dim satisfies Cond then
5: tout .dim = Project(tR , N);
6: tout .aggr = t.aggr;
7: Output(tout );
8: end if
9: end if
10: end for
11: for each descendant node ND of N (including N itself) whose

grouping attributes are a prefix of the grouping attributes of N do
12: for each tuple t in relation ND-TT do
13: if t.R-rowid belongs to RS then
14: Fetch tuple tR from R indicated by t.R-rowid;
15: if tR .aggr satisfies Cond and tR .dim satisfies Cond then
16: tout .dim = Project(tR , N);
17: tout .aggr = tR .aggr;
18: Output(tout );
19: end if
20: end if
21: end for
22: end for
23: for each tuple t in relation N-CAT do
24: Fetch tuple tA from AGGREGATES indicated by t.A-rowid;
25: if tA.R-rowid belongs to RS and tA.aggr satisfies Cond then
26: Fetch tuple tR from R indicated by tA.R-rowid;
27: if tR .dim satisfies Cond then
28: tout .dim = Project(tR , N);
29: tout .aggr = tA.aggr;
30: Output(tout );
31: end if
32: end if
33: end for

Based on the above, we have extended QU-CURE
(Algorithm 1) and developed QI-CURE (Query Indexed
CURE, Algorithm 2), an algorithm that benefits from low-
cost indexing over the fact table R. Note that the extended
algorithm uses an additional input parameter RS, which is a
superset of the row-ids of the tuples in R that satisfy condition
Cond. The construction of RS is based on the use of indices
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over R and will be further examined in the following subsec-
tion. For the moment, let us take its existence for granted.

The differences between QI-CURE (Algorithm 2) and
QU-CURE (Algorithm 1) exist in lines 2, 13, and 25 of the
former. In these lines, QI-CURE additionally checks if fetch-
ing a tuple tR from R can generate an output tuple that poten-
tially satisfies the condition Cond. Note that it performs this
test without fetching tR , based only on the information of
RS. If the R-rowid of tR is not a member of RS, the potential
output tuple that would be generated by fetching tR would
not satisfy Cond, by definition of RS. In this case, the algo-
rithm does not fetch tR , saving an unnecessary disk seek
operation. In other words, QI-CURE exploits the additional
information of RS in order to prune early during its execu-
tion the usually expensive access of tuples that do not qualify
the selection criteria of a given query. Recall that earlier we
have identified such access costs as a main bottleneck in
query answering over CURE cubes. Interestingly, the set RS
can be efficiently represented as a bitmap vector, where zero
(one) values denote that the corresponding tuple in R does
not (may) satisfy Cond. This representation of a set is both
compact and offers efficient containment tests with the use
of simple bitwise operations.

4.4 Query optimization issues

Taking into account the particular structures described in the
previous subsection for efficiently indexing a fact table R
in order to accelerate queries over the corresponding CURE
cube, in this subsection, we study query-optimization issues
customized for CURE and propose an algorithm for con-
structing RS, the aforementioned input parameter of algo-
rithm QI-CURE (Algorithm 2).

Assume a group-by query Q (of the form presented in
Sect. 4.1) over a node N, and let the WHERE part in the SQL
syntax of Q look as follows:

WHERE (∆1 op1 δ1) AND (∆2 op2 δ2) AND…AND (∆k opk δk )

In this expression ∆i (i ∈ [1, k]) denotes a dimension
of R, opi is a comparison operator (e.g., >, =, <), and δi a
value in the domain of ∆i . Furthermore, let the predicates
(∆i opi δi ) be ordered in a decreasing selectivity order, i.e.,
let the most selective predicate (the one that filters out the
largest number of tuples) be first and so on (this may require
query rewriting). Moreover, suppose that |N| is the number
of tuples in node N, CR the average cost of fetching a tuple
from R, and Si the selectivity factor of the i-th predicate,
i.e., an estimation of the fraction of tuples in R that satisfy
the condition it expresses. Finally, let Ii be an estimation
of the cost of accessing the index of R that corresponds to
dimension ∆i in order to find the set of row-ids of the tuples
in R that satisfy the condition expressed by the i-th predicate.
Then, the cost C0 of fetching from R all tuples indicated by

R-rowids stored in N without using any index is given by the
formula C0 = |N| × CR. Similarly, the cost C1 of fetching
from R only the tuples indicated by R-rowids in N that satisfy
the first predicate is given by the formula C1 = |N| × CR ×
S1 + I1. Generally, if we define I0 = 0, S0 = 1, and assume
that data is uniformly distributed and that values in different
dimensions are independent, the cost Ci of fetching from R
only the tuples indicated by R-rowids stored in N that satisfy
the first i predicates (i ∈ [0, k]) is given by formula (4.1).

Ci = |N| × C R ×
i∏

n=0

Sn +
i∑

n=0

In (4.1)

Note that the first term in formula (4.1) decreases with i ,
since Si ≤ 1, whereas the second one increases, since Ii ≥ 0.
Our prototype optimizer uses formula (4.1) in order to esti-
mate the value i ∈ [0, k] that minimizes Ci and, equivalently,
the indices that we need to access for optimally answering
the given query Q. If RS0 is a bitmap vector of |R| bits all
set to 1, RSi is a bitmap vector whose m-th bit is set to 1 if
the m-th tuple in R satisfies the condition expressed by the
i-th predicate, and our optimizer indicates that the number of
indices that must be accessed is n, then the input parameter
RS of QI-CURE is given by formula (4.2).

RS =
n⋂

i=0

RSi (4.2)

Finding the individual RSi using the index structures pro-
posed in the previous subsection is straightforward and com-
puting their intersection is easy using bitwise operations.
After the discussion in this subsection, let us repeat the def-
inition of RS given above: RS is a superset of the row-ids of
the tuples in R that satisfy condition Cond. Now, it should
be clear why RS is generally a “superset of” and not “the set
of”. It is because we expect that usually n < k. RS becomes
exactly the set of the row-ids of the tuples in R that satisfy
Cond when the optimizer decides that n = k.

Note that superficially setting n = k without using the
aforementioned formulas may be satisfactory for flat cubes,
because the domains of the dimensions are usually large and
hence Si and Ii are usually minor for any i ∈ [1, k] keeping
the cost Ci relatively small. Nevertheless, when hierarchies
exist, the domains of the dimensions are usually small, espe-
cially at the higher hierarchy levels. A small domain implies
that a large number of tuples in R have the same value in a
given dimension, increasing both Si and Ii , and hence Ci as
well. The potential large cost of Ci explains why the use of
the aforementioned formulas is mandatory for CURE, which
is designed for hierarchical cubes as well.

123



272 K. Morfonios, Y. Ioannidis

Fig. 19 Construction time (real datasets)

4.5 Experimental evaluation for the indexed case

In order to evaluate the efficiency of the proposed method
for answering queries over an indexed CURE cube, we have
implemented QI-CURE and compared it with QU-CURE.
In this subsection, we have excluded the other BUC-based
algorithms from our experimental evaluation for the follow-
ing reasons:

– None of them supports hierarchies.
– Most of them (the exception is TRS-BUC) are based on

indexing the entire cube.
– All of them have already been found essentially inferior to

CURE both in cube construction and in query answering
over unindexed cubes.

Furthermore, since we have found that the version of
CURE called CURE+ is in most cases preferable, hereafter
we focus on it. In this new context, we have decided to omit
the symbol “+” and use the name CURE for CURE+, for
the sake of simplicity. Below, we present the most indicative
results of our experimental study. We omit the rest for the
sake of brevity.

Flat cubes: Figure 19 illustrates the time required for con-
structing and indexing CURE cubes over the two real-world
datasets used throughout this paper, namely CovType and
Sep85L. The white part at the bottom of each column in this
figure depicts the cube-construction time, while the black
part at the top shows the additional time spent on indexing
the corresponding fact table. Note that the cube-construction
algorithm that generates the white part has been the topic of
another publication [22] briefly presented in Sect. 3.2; hence,
we should mainly focus on the black part, which is gener-
ated by the indexing algorithm proposed for CURE cubes
in Sect. 4.3. Similarly, Fig. 20 illustrates the storage-space
requirements of each CURE cube and of the corresponding

Fig. 20 Storage space (real datasets)

Fig. 21 Average QRT (CovType)

indices. Again, the white part at the bottom of each column
represents the storage space necessary for materializing the
cube itself, while the black part at the top shows the addi-
tional space required for storing the index over the corre-
sponding fact table. Clearly, both figures indicate that the
resources required for cube construction and storage domi-
nate the additional resources required for indexing the fact
table. This gives strong evidence that we have achieved one
of our initial design goals, i.e., to use a ROLAP compati-
ble indexing scheme on top of CURE that does not induce
significant overhead on the cubing process.

Furthermore, Fig. 21 presents average query-response
times produced by QI-CURE and QU-CURE over the
indexed and the unindexed version of the CURE cube of
CovType, respectively. Figure 22 does the same for Sep85L.
The workloads in these experiments consist of 500 random
queries and the values shown in the figures are averages.
Three factors determine the selectivity of these workloads,
namely point probability pp, range probability rp, and all-
values probability ap. Factor pp denotes the probability that
the values of a dimension involved in a query are filtered by
an equality condition in the corresponding WHERE clause.
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Fig. 22 Average QRT (Sep85L)

Similarly, rp is the probability that the values of a dimension
are filtered by a range condition, while ap is the probability
that the values of a dimension are not filtered at all. Clearly,
pp + rp + ap = 1. In our experiments, we have set pp = 0.2
and varied the values of rp (and hence of ap as well, since they
are dependent, ap = 1−pp−rp). The horizontal axis in both
figures represents the different values of rp that we have used.
Clearly, in our setting, selectivity increases with rp (more
selective queries return less tuples). The reason for setting pp
in a relatively small value and varying rp is that a large value
of pp produces very selective queries that generate very small
or even empty result sets, which are not indicative. Finally,
we have set the selectivity factor (defined in Sect. 4.4) of
every range predicate to 20%.

Clearly, answering selective queries over CURE cubes
benefits when the fact table is indexed. Expectedly, the dif-
ference increases with selectivity in favor of QI-CURE. The
increase is, however, marginal and this is attributed to that the
corresponding fact tables fit in memory, which makes the cost
of fetching tuples from them relatively low. Hence, further
filtering the access to fact-table tuples does not offer much.
Due to lack of publicly available real-world datasets much
larger than CovType and Sep85L, we have further experi-
mented with synthetic ones, generated by the data generator
of the APB-1 benchmark [26]. Our conclusions follow.

Hierarchical cubes: Figures 23 and 24 illustrate the con-
struction time and the storage space, respectively, required
for constructing and indexing a CURE cube over a synthetic
APB-1 dataset of a low (0.4), a medium (4), and the highest
possible (40) density factor. The values along the horizontal
axis indicate the sizes of the corresponding fact tables. Again,
the white part of each column represents the resources con-
sumed by the original CURE algorithm, while the black part
shows the additional cost of indexing. Once more, we see that
our indexing technique does not induce significant overhead,
even when applied over the most challenging APB-1 dataset
(of density factor 40).

Fig. 23 Construction time (APB-1)

Fig. 24 Storage space (APB-1)

Fig. 25 Average QRT (APB-1, |R| ≈ 12 GB)

Furthermore, we have experimented with query answer-
ing over the indexed and unindexed CURE cubes of the
aforementioned synthetic datasets. The characteristics of the
workloads we have used are the same, as described above
for the real-world datasets. Figure 25 shows the results for
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the most challenging APB-1 dataset (of density factor 40),
which consists of approximately 5×108 tuples occupying 12
GB in binary format. Trends for factors 0.4 and 4 are similar,
hence omitted. Clearly, the use of indices offers great benefits
to QI-CURE, increasing with selectivity. In order to test the
impact of query optimization in the efficiency of QI-CURE,
in this experiment, we have also tried an alternative run with
the optimizer turned off. The line labeled “QI-CURE (with-
out optimization)” in Fig. 25 represents the corresponding
result. Expectedly, accessing an index for every predicate in
the WHERE clause of a query is not a good solution. Accord-
ing to the discussion in Sect. 4.4, the access of an index
may be expensive; hence, a proper selection of which indi-
ces to use is mandatory. Recall that our selection is based on
formula (4.1).

5 Incremental maintenance

Data cubes are usually constructed off-line in order to accel-
erate aggregate queries and consequently the every-day usage
of the data stored in a data warehouse. Nevertheless, such data
is not static in the general case but changes over time, as new
tuples are inserted in the fact table. Such modification must
be reflected in the data stored in the cube as well; otherwise,
query results become inaccurate.

Typically, data in a warehouse is periodically refreshed in
batch mode during a window of time, which must be kept
as small as possible. Hence, reconstructing the entire cube
from scratch every time the fact table changes is clearly not
practical; incremental maintenance must be applied instead.
In this section, taking into account the importance of refresh-
ing cube data, we study incremental maintenance of CURE
cubes following two alternatives: (a) an eager approach that
updates a CURE cube in a single off-line process and (b)
a lazy approach that performs only some lightweight opera-
tions during the off-line phase, preparing the actual update
of cube tuples on-line the first time they are accessed during
query answering. Finally, we combine the eager and the lazy
approach into an even more promising hybrid method. To the
best of our knowledge, the idea of lazily updating a cube is
novel.

In the following presentation, we denote by deltas the new
tuples inserted in the fact table since the last time the fact table
and the cube were completely consistent. We also make the
realistic assumption that the delta fact table is much smaller
than the original one. Moreover, we assume that the aggregate
functions applied are self-maintainable [25]. A set of aggre-
gate functions is self-maintainable if the new value of the
functions can be computed solely from the old values of the
aggregation functions and from the changes to the base data.
Aggregate functions can be self-maintainable with respect
to insertions only, deletions only, or both. A self-maintain-

able aggregate function is always distributive; conversely, a
distributive aggregate function is always self-maintainable
with respect to insertions but not necessarily with respect
to deletions. The COUNT function can help certain distrib-
utive aggregate functions to become self-maintainable with
respect to deletions as well. With respect to algebraic aggre-
gate functions, they can be expressed as a scalar function
of distributive aggregate functions (e.g., avg = sum/count);
hence, by keeping their (self-maintainable) distributive parts
separately, they can also become self-maintainable. For more
details on function types, please refer elsewhere [25]. Finally,
we focus only on insertions; deletions and updates can be
treated similarly with some additional machinery. Briefly, for
deletions, we assume that tuples in the fact table are not phys-
ically deleted but are simply marked as deleted. Otherwise,
row-id references stored in the cube pointing to deleted tuples
would be invalidated. These are useful to restore dimension
values for cube entries but not aggregate values, which are
obtained from the cube entries themselves, without requir-
ing access to the fact table, based on the CURE properties
described in Sect. 3.1. Moreover, to support deletions, we
also need to materialize in the cube the result of the COUNT
aggregate function, even if the user does not explicitly declare
it in the definition of the cube schema. COUNT is required
for two reasons: (a) for making a larger number of aggre-
gate functions self-maintainable with respect to deletions, as
explained above and (b) for monitoring when an NT/CAT
becomes a TT, which occurs when COUNT drops to 1 due to
deletions. With respect to updates, we treat them as a com-
bination of delete and insert.

5.1 An eager approach

The most common scenario of updating a ROLAP cube with
a set of deltas involves the construction of the delta cube,
built using only the deltas, and a subsequent refresh phase
for merging the original cube with the delta one. However,
existing techniques are not practical in the case of CURE
cubes, mainly due to that they have been designed for flat
rather than hierarchical cubes and, as a consequence, they
do not take care of the additional challenges imposed by the
nature of hierarchies, as explained in detail below.

According to the approach proposed elsewhere [7] for
accelerating the refresh phase in the case of BU-BST cubes,
a collection of a large number of indices is necessary, one
for every different node of the original cube. These indices
serve the search for matches between tuples of the delta and
the original cube (two tuples match when they have the same
dimension values). However, as shown in the existing liter-
ature [23], indexing every cube node separately is generally
very expensive in terms of both computational and storage
resources even in the flat case; the situation becomes even
worse in the presence of hierarchies, since the number of
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cube nodes increases dramatically. Hence, the approach of
BU-BST would invalidate the benefits of the CURE algo-
rithm, including construction speed and compression rate,
being thus unsuitable.

On the other hand, the algorithm proposed for the refresh
phase of updating a TRS-BUC cube is an attempt in the past
to avoid indexing the entire cube [23]. The algorithm scans
the tuples of the original cube and searches for matches with
tuples in the delta cube (the BU-BST approach does the oppo-
site). Proper in-memory hash tables built for indexing the
delta cube accelerate the procedure, based on that indexing
the delta cube is much cheaper than indexing the original one.
In order to check for tuple matches the algorithm decom-
presses the TRS-BUC cube nodes while scanning the tuples
stored in them, which is equivalent with restoring all redun-
dant information that had been removed from the cube dur-
ing construction. Decompressing tuples is necessary, since
TRS-BUC replaces some kinds of tuples (only TTs) with
row-id references, as also performed by CURE for all tuples.
Clearly, row-ids in the original and the delta cube are not
comparable, because they reference tuples stored in differ-
ent fact tables; hence restoring redundant information seems
inevitable. Unfortunately, this approach is not applicable in
the case of CURE either. As mentioned above, TRS-BUC
removes only some dimensional redundancy from the cube
by identifying only TTs and stores all the remaining tuples in
an uncompressed format. On the contrary, CURE identifies
and removes not only some but the entire dimensional redun-
dancy, constructing a much more compressed cube. Further-
more, CURE has been designed for hierarchical cubes as
well, which include a dramatically larger number of both
nodes and tuples compared to flat cubes. Hence, although
restoring the entire cube during update may be practical in
the case of TRS-BUC, it is impractical in the case of CURE
due to the reasons analyzed above.

Taking into account the increased requirements imposed
by the nature of hierarchies, we target at an update algorithm
that is not based on the existence of indices on the entire
cube, while it still does not require decompressing the entire
cube during the refresh phase. A way to achieve these design
goals is to make row-id references stored in the original and
the delta cube comparable. This means that if a tuple dt stored
in some node N of the delta cube matches with a tuple t in
the same node of the original cube, the associated row-id
stored in the delta cube should not point to the first tuple dft
in the delta fact table that has contributed to the construction
of dt; instead, the aforementioned row-id must point to the
first tuple ft in the original fact table that has contributed to
the construction of t. Since t and dt match, the projections of
dft and ft on the grouping attributes of N will match as well,
which ensures the correctness of the proposed solution.

In other words, we propose elimination of the need for
decompressing the original cube by incorporating smarter

compression into the construction of the delta cube. This
requires (a) small modifications in the CURE algorithm that
constructs the delta cube and (b) the existence of indices over
the original fact table R, for example of the form described
in Sect. 4.3, which are the same indices that are used by
QI-CURE as well. We call UE-CURE (Update Eagerly
CURE, Algorithm 3) the modified version of CURE. Among
the input parameters of this algorithm, R denotes the original
fact table and DR the delta fact table.

Algorithm 3 UE-CURE(OriginalCube, R, DR)
1: Call CURE(DR) to generate the tuples of DeltaCube (without storing

them) and
2: for each tuple dt of any node N CURE generates do
3: Find the set S of tuples in R that match with dt;
4: if (S == ∅) then
5: Append dt in node N of the OriginalCube;
6: else
7: dt.R-rowid = FindMinRowid(S);
8: Store the modified dt in node N of the DeltaCube;
9: end if
10: end for
11: for each node N of the DeltaCube traversed in a bottom-up and

breadth-first fashion do
12: for each tuple dt that belongs to node N do
13: t = FindMatchingTuple(OriginalCube, N, dt);
14: tnew = Merge(t, dt);
15: Replace t by tnew in the OriginalCube;
16: if t was TT in the OriginalCube then
17: Write t (as TT) in the parent nodes of N in the OriginalCube;
18: end if
19: end for
20: end for

The key idea is that, for every tuple dt that UE-CURE
constructs for some node N of the delta cube (Algorithm 3,
lines 1-2), it must further use the indices of R in order to
find the set S of tuples in R whose projection on the group-
ing attributes of N matches with dt (line 3). (We will give
more details about the construction of S below.) If S is empty
(line 4), dt does not match with any tuple in R, so it cannot
match with any tuple in node N of the original cube either. In
this case merging is trivial and degenerates to appending dt
in node N of the original cube (line 5). Otherwise, if S is not
empty (line 6), the aggregation of the tuples in it must have
given a tuple t in node N of the original cube during its con-
struction. According to the properties of CURE, the row-id
that substitutes the dimension values of t in the compressed
format of CURE must be the smallest row-id of the tuples
in S. Knowing S enables UE-CURE to find this smallest row-
id without accessing any tuple in the node N of the original
cube, but only the indices of R (line 7). Hence, UE-CURE
can store dt in the delta cube (line 8) replacing its dimen-
sion values with the smallest row-id of the tuples in S, which
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coincides with the row-id of the matching tuple t stored in
node N of the original cube.

After constructing the delta cube, UE-CURE merges the
matching tuples, which are by construction those sharing
the same row-id values, using a merge-scan algorithm (lines
11-20), based on that CURE sorts cube tuples according to
the row-id values, as proposed in Sect. 3.1 for performance
reasons. Note that, during merging, any tuple t that becomes
updated and was stored as an NT in the original cube remains
an NT, whereas TTs and CATs may be stored either as NTs
or CATs, depending on the modifications performed on other
cube tuples as well. In order to classify the updated tuples and
separate NTs from CATs, UE-CURE follows the exact same
strategy of the original CURE, i.e., it uses a specialized struc-
ture called signature pool (originally defined elsewhere [22]).
Hence, UE-CURE preserves the CURE format unaffected
and generates an updated cube identical to the one that would
be produced by full reconstruction, a highly desirable prop-
erty of any incremental-maintenance algorithm. This oper-
ation is incorporated in functions Merge and Replace (lines
14–15). Furthermore, any updated tuple t that was stored as
TT in some node N of the original cube must be written as
TT in all of N’s parents one level above in the execution
plan of CURE (lines 16–18), since it will not be shared any
more between N and its ancestors. (Recall that an example
of an execution plan of CURE appears in Fig. 7.) This prop-
erty makes it necessary that the merge-scan algorithm visits
the nodes in the execution plan in a bottom-up and breadth-
first fashion (line 11). Note that the aforementioned algo-
rithm is customized only for CURE cubes, since CURE is the
only method that replaces all dimension values with row-id
references.

Let us now return to the topic of efficiently construct-
ing the aforementioned set S and explain how UE-CURE
takes advantage of the pipelined execution of the original
CURE (Fig. 7). Assume that UE-CURE has just generated
a tuple dt = 〈a2〉 of node A2 in the example of Fig. 7 (we
omit the aggregate values in the vector that represents dt
for the sake of simplicity) and has found the corresponding
set S〈a2〉 of tuples in R that match with dt, i.e., the set of
tuples in R that have the same value a2 in A2. Then, accord-
ing to the particular execution plan, UE-CURE proceeds to
node A2B1 and, for some value b1 in the domain of B1,
it generates tuple 〈a2, b1〉. Clearly, the following equation
holds S〈a2,b1〉 = S〈a2〉

⋂
S〈b1〉. Hence, in order to find the

set of tuples S〈a2,b1〉, UE-CURE must simply find S〈b1〉 and
intersect it with S〈a2〉, which is already materialized from the
previous step. Taking into account the particular structures
used for indexing R (Sect. 4.3), this is cheaper than finding
S〈a2,b1〉 from scratch. Generalizing this example, whenever
UE-CURE generates another tuple dt in some node N of
the delta cube, it also accesses a single index structure, the
one associated with the right-most dimension of N, finds the

set of tuples in R that have the same value with dt in the
right-most dimension of N, and intersects it with a similar
set constructed in the previous node visited in the execution
plan.

Furthermore, if UE-CURE finds some set S empty, it con-
cludes not only that the newly generated tuple does not match
with any tuple in the original cube, but also that all of its
specializations in the higher levels of the execution plan do
not match either. The proof is straightforward: the result of
the intersection of any set with an empty set is always the
empty set. This property allows an optimization that avoids
the scan of indices in higher levels, if a tuple has already been
found nonmatching in some lower level.

A potential problem of the method is that the number of
tuples in R with a specific value in a particular dimension may
be very large, especially when this dimension is at a high hier-
archy level and has, therefore, a small domain. In such a case,
the number of row-ids associated with the particular value in
the corresponding index of R will be equally large, which
may produce large sets during the operation of UE-CURE.
This fact generates some concerns, since the construction and
intersection of large sets may be prohibitively expensive. In
order to overcome this problem, we propose the construction
of a limited number of additional indices using information
stored in some cube nodes, trading some construction time
and storage space for update efficiency. The key point is that
|N| ≤ |R| for any node N, since N stores aggregated data;
hence, the indices built based on the data of N are smaller
as well, resulting into smaller sets during the operation of
UE-CURE. Note that the additional indices discussed here
should not reference tuples stored in N, since this would be
useless according to the description of UE-CURE. Instead,
they should reference tuples in R, provided that the row-ids
of the corresponding tuples appear in some tuple stored in N.
In other words, the references stored in these indices are the
subset of the references stored in the indices of R that appear
in the R-rowid column of some tuple in N. This is functional
because UE-CURE does not actually need the entire set S of
tuples in R with a particular value in a specific dimension, but
only the smallest row-id among them. N stores exactly this
smallest row-id; hence, the corresponding index built using
data of N can accelerate the search for the particular row-id
during update.

Having decided to construct additional indices, the prob-
lem that arises is which nodes to select in order to build the
corresponding indices. In order to solve this problem we for-
mulate the following rule:

Rule 5.1: Assume D dimensions ∆1,…, ∆D and let ∆i, j

denote that the i-th dimension is at level j . (ALL denotes the
maximum level). Then the construction of the sets associated
with node

N = ∆1,l1 . . . ∆k,lk ∆k+1,ALL . . . ∆D,ALL

123



Revisiting the cube lifecycle 277

with lk = ALL and k ≤ D (k is the order of N’s right-most
dimension) can be accelerated by indices constructed based
on data of a node

IN = ∆1,l ′1 . . . ∆k,l ′k ∆k+1,l ′k+1
. . . ∆D,l ′D

if l ′i ≤ li , ∀ i ∈ [1, k] and l ′i = 0, ∀ i ∈ (k, D].
The proof of rule 5.1 is based on that we can use the

indices of a node IN to accelerate the construction of sets in N,
provided that IN is at least as detailed as N and all of its ances-
tors in the execution plan of UE-CURE (Fig. 7) that have the
grouping attributes of N as a prefix. The latter is required to
preserve the correctness of UE-CURE; otherwise, the incre-
mental construction of sets using intersection would be inval-
idated. For example, the sets of node A2 can be constructed
using indices based on A2B0C0, A1B0C0, or A0B0C0, but
not on A2, A1B0, or A1B1C0.

Furthermore, let |IN| denote the number of tuples in node
IN, dIN the number of grouping attributes of IN, k the order
of the right-most dimension of N, lk its hierarchy level, and
Ck,lk its cardinality (i.e., its domain size). Then, we can esti-
mate the cost CIIN of constructing indices using data in IN
and the cost CSN,IN of constructing a set in node N using the
indices of IN (given that N and IN obey rule 5.1) with the
following formulas:

CIIN = |IN|×dIN (5.1)

CSN,IN = |IN|
Ck,lk

(5.2)

Formula (5.1) expresses the cost of constructing a number
of dIN indices referencing a number of |IN| tuples each. For-
mula (5.2) says that the cost of constructing a set at a node N
based on indices of IN is proportional to the number of tuples
in IN that have the same value in the right-most dimension
of N, assuming a uniform distribution.

Moreover, let SN be the set of all cube nodes, SIN the set
of the indexed nodes, and IN(N) the smallest node IN ∈ SIN
that obeys rule 5.1 with respect to N. Then, the total cost CI
of indexing, and the total cost CS of constructing all sets in
all nodes after the insertion of a delta tuple are clearly given
by formulas (5.3) and (5.4), which can be evaluated based on
formulas (5.1) and (5.2), respectively.

CI =
∑

IN∈SIN

CIIN (5.3)

CS =
∑

N∈SN

CSN,IN(N) (5.4)

CI (CS) increases (decreases) with the number of nodes
in SIN. Our experiments (e.g., Fig. 26, whose details will
be explained in Sect. 5.4) show that the graph CS versus CI
has a knee after the addition of a relatively small number of
nodes in SIN. Based on this, we propose the use of a greedy
algorithm called SelectSIN (Algorithm 4) for the selection
of a proper set SIN.

Fig. 26 The graph CS versus CI

Algorithm 4 SelectSIN(R, SN)
1: Set SIN = {R};
2: repeat
3: Find node IN (where IN ∈ SN and IN ∈ SIN) that maximizes the

difference CSSIN - CSSI N∪{IN};
4: Set SIN = SIN ∪ {IN};
5: until a knee has been found
6: Return SIN;

5.2 A lazy approach

In the previous subsection, we developed UE-CURE, an
eager algorithm for the incremental maintenance of CURE
cubes. As also revealed by our experimental evaluation pre-
sented in Sect. 5.4, the dominating factor in UE-CURE is the
time taken for the identification of tuple sets in R with a par-
ticular value in a given dimension. Unfortunately, the cost
of this key operation is usually considerable and increases
with the size of R, raising concerns for the practicality of
UE-CURE. Additionally, recall that we have already rejected
other solutions based on indexing the entire cube or decom-
pressing it during merging. Hence, the following question
arises: is the compression rate of CURE cubes so high and the
challenges imposed by the nature of hierarchies so demand-
ing that they prevent the development of any efficient algo-
rithm for the incremental maintenance of CURE cubes?
Working on this question, we have come up with the fol-
lowing answer: the incremental maintenance of CURE cubes
seems prohibitively expensive if we think conventionally try-
ing to develop algorithms following the well-known strat-
egies (i.e., eager tactics). In other words, the problem is
so demanding that we need to think unconventionally and
develop an algorithm that significantly deviates from poli-
cies common in data cubing. Such an algorithm is the topic
of this subsection.

The key idea of our alternative approach is that no data
stored in a cube can ever be considered obsolete until some
query retrieves it. In this sense, the eager approaches seem
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too pessimistic and conservative: they spend a considerable
amount of time accessing and refreshing a-priori every last
detail of the entire cube, although some parts of it may be
queried in the far future, if ever.

Our lazy approach presented here takes a completely dif-
ferent route. During the off-line window available for the
incremental maintenance of the entire data warehouse, we
simply construct the delta cube using the original CURE
algorithm with no modification whatsoever. Taking into
account that the delta fact table is usually much smaller
than R, the construction of the delta cube can be thought
of as a lightweight operation, especially since performed
by an efficient algorithm like CURE. By constructing the
delta cube, we prepare the system for incrementally updat-
ing data on-line, the first time retrieved by a query, say Q.
Note that lazy approaches have been successfully used in
the past for updating other types of entities stored in a data
warehouse, e.g., materialized views and indices [6,29,43].
Nevertheless, to the best of our knowledge, they have never
been applied in algorithms related to data cubes. Further-
more, to the best of our understanding, existing lazy methods
update the entire entity, if necessary, before accessing it. In
our approach, we only update a part of it, the one consisting
of the tuples that belong to the result set of the corresponding
query Q.

To understand why a lazy approach is more promising,
recall that one of the main goals of (eager) UE-CURE is to
merge the original and the delta cube without decompressing
the former in order to avoid the considerable additional cost.
However, during query answering the cube tuples selected by
Q are anyway decompressed, as explained in Sect. 4. Hence,
shifting merging during query answering achieves an easier
search for tuple matches between the original and the delta
cube, without additional costs.

Having constructed the delta cube off-line, our lazy
approach needs some simple modifications in the query
answering algorithms originally presented in Sect. 4. Let us
use UL-CURE (Update Lazily CURE) to denote the extended
query answering algorithm (Algorithm 5). The input param-
eters of UL-CURE are a superset of the parameters of
QI-CURE (Algorithm 2): DR denotes the delta fact table
and D_AGGR the relation AGGREGATES of the delta cube.
Instead of answering Q by selecting tuples from the original
cube only, UL-CURE first selects the tuples in the delta cube
that satisfy the conditions of Q (line 1), and keeps them in
some memory structure H that allows fast look-ups (e.g., a
hash table). Then, it selects the tuples from the original cube
that satisfy Q’s conditions and for every such tuple t (lines
2–3), it checks whether t matches with any tuple dt in H
(line 4), before writing t in the output. If it finds no match
(line 5), it simply outputs t (lines 6–7). Otherwise (line 8), it
removes dt from H (so that it does not find it again in sub-
sequent steps), updates the aggregate values of t by merging

them with the corresponding values of dt, and writes the
updated tuple tout in the output (lines 9–11). Subsequently,
UL-CURE checks whether updating the cubes on the disk
is safe (line 12). If Q queries node N, the condition that
must hold for safety is that neither t nor dt is a TT phys-
ically stored in a descendant node DN of N in the execu-
tion plan of CURE (something possible due to the proper-
ties of TTs). Otherwise, if either t or dt (or both) is a TT
that indirectly belongs to N and is actually stored in DN,
then UL-CURE must not update either of them on the disk,
because fixing the data in nodes DN and N would not be
enough, since a large number of nodes may exist in-between
in the execution plan and updating a TT on disk in this case
would cause a loss of tuples in these nodes. On the other
hand, if the safety condition holds, UL-CURE updates the
original and the delta cube as follows: it replaces the old
tuple t with tout and removes dt from delta cube so that
it does not find it again in subsequent queries (lines 13–
14). (Interestingly, the update on disk exhibits some desir-
able locality of reference, since the block containing t is
already resident in memory.) Moreover, if either t or dt was
a TT (physically stored in N) before merging, UL-CURE
must perform an additional step of writing it also as TT
in N’s parents in the execution plan of CURE (lines 15–
20); otherwise, tuples would be lost, as already explained
above.

After writing to the output all tuples of the original cube
that satisfy the conditions of Q, UL-CURE makes a final
pass of the remaining tuples in H (lines 24–30). These are
tuples from the delta cube that satisfy the query conditions,
but have not matched with any tuple in the original cube.
UL-CURE writes these tuples to the output (line 25). Fur-
thermore, it appends them in the original cube (line 27) and
removes them from the delta cube (line 28), after checking
whether this operation is safe (line 26).

Note that UL-CURE preserves the CURE format using a
signature pool, as also performed by CURE and UE-CURE.
This behavior is incorporated in functions Replace and
Append (Algorithm 5, lines 13 and 27). Finally, note that
after UL-CURE updates a tuple on the disk, it can simply
use it in subsequent queries without paying any additional
costs for updating it again. This feature is particularly bene-
ficial if there are hot spots in the cube data, i.e., parts of the
cube frequently queried.

5.3 A hybrid approach

Our experiments in Sect. 5.4 show that the lazy approach
(UL-CURE) is much more efficient than the eager one
(UE-CURE), since the latter takes more time even than recon-
struction. Nevertheless, the use of UE-CURE is sometimes
inevitable, fortunately, in trivial cases that UE-CURE behaves
well: Assume that during an update window a delta fact table
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Algorithm 5 UL-CURE(R, DR, AGGR, D_AGGR, N, Cond,
RS)
1: Fill H with the set of delta tuples in N that satisfy Cond returned by

QU-CURE(DR, D_AGGR, N, Cond);
2: Call QI-CURE(R, AGGR, N, Cond, RS) and
3: for each tuple t in its result set do
4: dt = SearchForMatching(t, H);
5: if (dt == NULL) then
6: tout = t;
7: Output(tout );
8: else
9: Remove dt from H;
10: tout = Merge(t, dt);
11: Output(tout );
12: if neither t nor dt is a TT physically stored in a descendant of

N then
13: Replace t by tout in the original cube;
14: Remove dt from the delta cube;
15: if t was TT in the original cube then
16: Write t (as TT) in the parent nodes of N in the original

cube;
17: end if
18: if dt was TT in the delta cube then
19: Write dt (as TT) in the parent nodes of N in the delta cube;
20: end if
21: end if
22: end if
23: end for
24: for each tuple dt remaining in H do
25: Output(dt);
26: if dt is not a TT physically stored in a descendant of N then
27: Append dt in the original cube;
28: Remove dt from the delta cube;
29: end if
30: end for

DR1 arrives, forcing the system to construct the correspond-
ing delta cube DC1, according to the description in Sect. 5.2.
Then, during queries, UL-CURE updates the original cube
and removes some tuples from DC1. However, UL-CURE
does not guarantee that it will consume all tuples in DC1

incorporating them in the original cube, because this depends
on the particular workload. Therefore, if during a subse-
quent update window another delta fact table DR2 arrives,
the system will not be able to handle it. In this case, merg-
ing DR1 and DR2 and reconstructing the corresponding delta
cube from scratch would be incorrect, since some tuples of
DC1 have already been incorporated in the original cube.
Thus, in this case, the only solution is to eagerly update the
remaining tuples in DC1 with the tuples of DC2 using UE-
CURE. Since deltas are usually small, UE-CURE must be
efficient on that. Our experiments in Sect. 5.4 confirm this
hypothesis.

In conclusion, we propose a hybrid method for updating
CURE cubes: UL-CURE updates the original cube in a lazy
fashion, while UE-CURE eagerly updates the delta cube, if
the latter is not entirely incorporated in the original one dur-
ing the on-line phase.

Fig. 27 Update time of UE-CURE

5.4 Experimental evaluation

In order to evaluate the efficiency of the proposed methods,
we have implemented the two approaches for incrementally
updating CURE cubes, namely UE-CURE and UL-CURE.
In this subsection, we focus on CURE and exclude the other
BUC-based algorithms from the following experiments for
the same reasons already explained in Sect. 4.5. Below, we
present the most indicative results of our experimental study.
We omit the rest that provide no further intuition on the
behavior of the proposed techniques for the sake of brevity.

As explained in Sect. 5.1, the update speed of UE-CURE
becomes faster by constructing additional indices over nodes
selected by algorithm SelectSIN (Algorithm 4). Figure 26
illustrates the graph CS vs. CI (i.e., estimated update cost
vs. estimated index cost) for the ten first nodes selected by
SelectSIN for accelerating the update process of an APB-1
dataset of density factor 0.4 (|R| ≈ 120 MB). Clearly, the
graph has a knee on the fifth point, suggesting that indexing
only the five first nodes proposed by SelectSIN achieves a
profitable tradeoff. Furthermore, Fig. 27 presents the actual
efficiency of UE-CURE when updating a fact table of APB-1
of density factor 0.4 (|R| ≈ 5×106 tuples) with 104 delta
tuples. The update cost appears with respect to the stor-
age space traded for constructing additional indices over
up to the ten first nodes proposed by SelectSIN. The graph
has a knee at the fifth point as well, confirming the wor-
thiness of the selection of SelectSIN. Unfortunately, even
after this optimization, the update efficiency of UE-CURE is
approximately three times worse than reconstruction, verify-
ing our claim that an eager approach is not a viable solution.
(The situation becomes worse as |R| increases). However,
note that in such a case that involves a relatively small R,
although the update cost of UE-CURE is higher than the cost
of reconstruction, it is still reasonable as an absolute number
(15 min are not prohibitive). Such behavior supports our
claim that UE-CURE can be practically used in a hybrid
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Fig. 28 Overhead of UL-CURE

solution (Sect. 5.3) only for updating small delta cubes with
new delta tuples, if necessary.

Unlike UE-CURE that generally generates performance
concerns, the lazy approach UL-CURE behaves very effi-
ciently, even when updating the cube that corresponds to the
most challenging dataset used in this paper, i.e., the dataset
constructed by the data generator of APB-1 in its highest den-
sity factor 40 (|R| ≈ 5×108 tuples), with 106 delta tuples.
Figure 28 illustrates the efficiency of UL-CURE in answer-
ing queries while updating the corresponding cube compared
with the simple QI-CURE that only answers queries over the
reconstructed cube. The workloads are the same also used
in the experiment of Fig. 25. Interestingly, UL-CURE only
adds some marginal overhead in queries of low selectivity
(large output) and even outperforms QI-CURE as selectivity
increases. This is attributed to that selective queries produce
smaller result sets and, therefore, a smaller number of tuple
matches between the original and the delta cube. This trend
decreases the cost of update. Furthermore, the size of the
original cube (the one refreshed by UL-CURE) is smaller
than the size of the reconstructed cube (the one accessed by
QI-CURE for answering queries); hence access costs over the
former are lower than over the latter, decreasing the overall
cost of UL-CURE.

The workloads used in the previous experiment do not
guarantee that UL-CURE updates the entire cube incorpo-
rating every last detail of the delta cube into it. In order to
study the behavior of UL-CURE under such conditions, we
generated a workload of all possible node queries on top of
the cubes constructed over APB-1 datasets of densities 0.4,
4, and 40, respectively. Recall that a node query includes
no WHERE clause in the corresponding SQL syntax and,
therefore, reconstructs an entire node of the corresponding
cube. Such workloads guarantee that UL-CURE refreshes the
entire cube. Figure 29 shows the amortized cost for updat-
ing the three cubes mentioned above compared to the cost of
full reconstruction. In the horizontal axis appear the sizes of

Fig. 29 Update time of UL-CURE

Fig. 30 Effect of delta size on UL-CURE

the corresponding fact tables. Note that from the (amortized)
cost of UL-CURE we have subtracted the pure cost of query
answering, keeping only the additional cost for refreshing
the cube and the construction time of the delta cube (which
is negligible, approximately equal to 30 sec). The conclusion
is that in the small dataset (to the left), whose fact table fits
in memory, the amortized update cost is relatively high and
comparable to the reconstruction cost. This is attributed to
the fact that the part of the algorithm responsible for query
answering is very fast, since it benefits from caching incur-
ring no I/O. On the other hand, the part of the algorithm that
is responsible for the update procedure stores the updated
and the new values on disk, incurring I/O, which dominates
overall. On the contrary, the situation in the larger datasets
is different: the I/O for query answering dominates the I/O
for pure update, making the amortized cost of UL-CURE
approximately an order of magnitude smaller than recon-
struction time.

Finally, in order to study the effect of the size of the delta
fact table on the performance of UL-CURE, we have var-
ied the number of delta tuples from 104 to 106. Figure 30
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shows the results on the most challenging dataset used in
this paper (APB-1 of density factor 40). Note that the hori-
zontal axis is logarithmic. Clearly, the amortized update cost
of UL-CURE scales well with the size of the delta fact table.
Although reconstruction time does not depend on the delta
size, we have added it in the figure for comparison reasons.

6 Conclusions and future work

In this paper, for the first time, we have studied the entire
ROLAP data cube lifecycle in the presence of hierarchies. In
particular, we have built upon previous work on construction
and storage of CURE cubes [22] and have developed a suite
of efficient algorithms for query processing and incremental
updating over them. These are significantly different from
earlier approaches, which have been proposed for flat cubes
constructed by other techniques but are inadequate for CURE,
due to its high compression rate and the presence of hier-
archies. We have addressed issues such as indexing, query
optimization, and lazy update policies. Especially regarding
updates, such lazy approaches have been applied for the first
time on cubes. We have demonstrated the effectiveness of
CURE in all phases of the cube lifecycle through experiments
on both real-world and synthetic datasets. Among the exper-
imental results, we distinguish those that have made CURE
the first ROLAP technique to complete the construction and
usage of the cube of the highest-density dataset in the APB-
1 benchmark (12 GB). CURE was in fact quite efficient on
this, showing great promise with respect to the potential of
the technique itself and of ROLAP in general.

In the future, we would like to investigate the power of
using aggregate queries in different types of applications.
Some examples include applications for classification over
large and continuously changing datasets or for improved
searches in the web. Using CURE to implement such tasks
efficiently seems very promising.
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