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Abstract. Physical data independence is touted as a central
feature of modern database systems. It allows users to frame
queries in terms of the logical structure of the data, letting
a query processor automatically translate them into optimal
plans that access physical storage structures. Both relational
and object-oriented systems, however, force users to frame
their queries in terms of a logical schema that is directly
tied to physical structures. We present an approach that elim-
inates this dependence. All storage structures are defined in a
declarative language based on relational algebra as functions
of a logical schema. We present an algorithm, integrated with
a conventional query optimizer, that translates queries over
this logical schema into plans that access the storage struc-
tures. We also show how to compile update requests into
plans that update all relevant storage structures consistently
and optimally. Finally, we report on experiments with a pro-
totype implementation of our approach that demonstrate how
it allows storage structures to be tuned to the expected or ob-
served workload to achieve significantly better performance
than is possible with conventional techniques.

Key words: Indexing – Physical database design – Materi-
alized views – Physical data independence

1 Introduction

Physical data independence is usually described as the abil-
ity to write queries without being concerned with how the
data are actually structured on disk. In current database sys-
tems (DBMSs), however, queries are tied to logical con-
structs, such as relations, class extents, or object sets, that
closely track the physical organization of data. In a relational
database, for example, each relation is usually stored as a
file, perhaps with a primary index. The database administra-
tor can improve performance by adding secondary indices
or by specifying the clustering of files, but more extensive
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improvements require modifying the logical schema, for ex-
ample by de-normalizing tables. Such modifications necessi-
tate rewriting queries and, thus, physical data independence
is lost.

Our goal is to improve physical data independence by
decoupling physical decisions such as clustering and repli-
cation from the logical data model, so that the physical orga-
nization can be altered without changing the logical schema
or queries written against it. A more subtle benefit is that it
places a wider range of possibilities for data organization at
the disposal of the database administrator. For example, the
fact that the data are described in a traditional normalized
relational schema should not preclude a replicated, nested
physical organization, if that organization would achieve
better performance for the anticipated mix of queries and
updates.

Assume that data are stored in files of records, possibly
implemented by an index structure such as a B+-tree. Instead
of requiring a one-to-one correspondence between logical
data constructs and physical storage structures (e.g., relation
↔ file), we allow the contents of each file to be defined as
a function of the logical schema, specified by a restricted
relational-algebra expression. We call the combination of a
file and its definition agmap(pronounced “gee-map” and an
acronym for generalized multilevel access path). In the sim-
plest cases, gmaps correspond to traditional storage struc-
tures such as an unordered file of the tuples in a relation
or an index on that file. gmaps, however, can also be used
to partition the database vertically and horizontally and add
multiple access paths, generalizing path indices. Since gmaps
are allowed to contain overlapping data, they can also cap-
ture redundant storage structures. Gmaps are invisible at the
logical layer, so their definitions affect only the performance
of queries and not their semantics.

In this paper, we restrict both gmap definitions and
queries to project-select-join (psj) expressions over a sim-
ple semantic data model. We demonstrate that such expres-
sions are powerful enough to express most conventional stor-
age structures, as well as more “exotic” techniques such as
path indices (Bertino and Kim 1989; Maier and Stein 1986),
field replication (Kato and Masuda 1992; Shekita and Carey
1989), and more. We present an algorithm to translate user
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Fig. 1. The logical schema

queries, expressed as psj-queries over structures in the logi-
cal schema, into relational expressions over the gmaps. We
also show how this translation can be integrated into a con-
ventional query optimizer.

One of the benefits of our approach is that gmaps may
store redundant data to improve the performance of queries.
Thus, updates may need to change multiple gmaps in a con-
sistent manner. We show how a simple modification of the
query translation algorithm can produce plans to perform
these updates. We also demonstrate how this flexibility can
be used in several other areas, e.g., acceleration of bulk load-
ing of the database and acceleration of updates of complex
objects.

All of the algorithms presented in this paper have been
implemented in a prototype system. We report on experi-
ments with a test database that illustrates that for a plausible
mix of queries and updates, our techniques allow the physi-
cal representation to be tuned to provide better performance
than what could be achieved through standard relational or
object-oriented methods. We conclude this paper by iden-
tifying the areas that need further development before our
technique can be widely used in a practical setting.

2 The gmap definition language

In this section, we introduce our data model and the corre-
sponding data definition language (DLL). The DDL has two
parts, thelogical DDL, which defines the logical schema
capturing the conceptual organization of the data, and the
physical DDL, which defines the storage structures contain-
ing the data that instantiate the logical schema. We present
the model in two notations, a semantic one (resembling the
ER model) and a formal relational one. The two notations are
equivalent; the semantic notation is more intuitive as a user
interface, but all of our algorithms manipulate the relational
forms of schemas.

2.1 The logical data definition language

In the semantic notation, schemas are depicted as graphs.
Throughout this paper we illustrate our approach with an
example database describing a university and its personnel
(see Fig. 1). The textual form of the schema is given in Ap-
pendix A using ODL (Catel 1993).

Nodes in Fig. 1 represent domains, and solid edges repre-
sent relationships between them. Leaves represent primitive

domains such as integers, character strings, or real num-
bers. Internal nodes represent domains populated with iden-
tity surrogates (tuple or object identifiers). In our example
schema, these domains areDept (department),Faculty ,
Student , Course , andTA (teaching assistant). To reduce
clutter in the figures, these domain names are abbreviated to
their initials. Functional dependencies are indicated by arrow
heads. Inclusion dependencies (formally defined in Sect. 3)
can also be expressed but are not shown for simplicity.IsA
associations are denoted by dashed arcs pointing to the su-
pertype. For our purposes, they are simply relationships with
certain functional and inclusion dependencies implied by de-
fault. A name of the formD.d is used to denote both a prim-
itive domain and its relationship to an internal domain. For
example,Course.level names both a primitive domain
of integers and its relationship to theCoursedomain.

In the relational form of the data model, each edge of a
schema graph from domainA to domainB is represented
as a binary relation with attributesA and B. Because of
this correspondence, we often use the term “attribute” as
a synonym for “domain” (node in the graph) and the term
“base relation” as a synonym for “relationship” (edge). Our
algorithms operate on the (binary) relational form of the
schema, so they apply to any semantic model that can be
represented by binary relations with functional and inclusion
dependencies.

2.2 The physical data definition language

In our system, all physical storage structures are defined as
gmaps. A gmap consists of a set of records (thegmap data),
a query that indicates the semantic relationships among the
attributes of these records (thegmap query), and a descrip-
tion of the data structure used to store the records (thegmap
structure). Although the actual database stores gmap data
rather than the base relations, the gmap data may be thought
of as the result of running the gmap query on the base rela-
tions.

Gmap queries are expressed in a simple SQL-like lan-
guage. For example, the gmap

def_gmap cs_faculty_by_area as btree by
given Faculty.area
select Faculty
where Faculty works_in Dept and

Dept = cs_oid

stores a set of pairs containingFaculty identifiers and
the corresponding area names. Only faculty members in
the computer science department (identified by the constant
cs oid ) are included. The gmap structure is a B+-tree in-
dexed byFaculty.area . The entireby clause defines the
gmap query. Attributes following thegiven and select
keywords are calledinput andoutputattributes, respectively,
and the predicateDept = cs oid is called aselection. In-
put attributes form the search key for gmap structures that
allow associative access.

The gmap query can also be expressed graphically as a
subgraph of the schema graph called thequery graph(see
Figs. 2–9). Shaded edges correspond to relationships or IsA
associations explicitly mentioned in thewhere clause or
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implicitly mentioned as part of primitive attribute names.
Input attributes are indicated by small arrows, and output
attributes are indicated by double circles around nodes. Re-
strictions are described as annotations on the corresponding
nodes.

Each query expressible in this language is equivalent to
a restricted psj query on the relational form of the logical
schema:

Q = πAσS(R1 on R2 on · · · on Rn)

In the above example,

Q = πF,F.area σD=cs oid (F.area on works in ).

Expressible queries obey the following restrictions:

1. they are range-restricted, i.e., all attributes inS andA
are attributes of the relationsRi

2. each attribute of the relationsRi appears at most once
in the projection listA

3. selections are conjunctions of comparisons (=, >,≥, <
,≤) between attributes and constants

4. joins are natural, i.e., only attributes with the same name
are joined and all attributes maintain their name in the
result. In particular, self-joins are not allowed.

In the remainder of the paper, we use the termpsj-queryto
refer to a query that conforms to these restrictions.

2.3 The query language

We often use the term “logical query” to refer to queries
posed on the logical schema. In this paper, we consider only
logical queries written in the same language that is used for
gmap queries. That is, they must be restricted psj-queries.
In addition, each query must be translatable into a psj-query
over gmaps or projections of them. Thus, we do not han-
dle cases where logical queries need to be translated into
unions or arbitrary sequences of psj-queries. Note that trans-
lated logical queries involve relations with arbitrary arity (the
gmap data), while gmap queries involve binary relations only
(corresponding to relationships).

2.4 Examples

gmaps can be used to define arbitrary physical representa-
tions, including those of a conventional normalized relational
database, an object-oriented database, or any combination of
the two.

To illustrate the object-oriented approach, suppose we
want to cluster together all information about each faculty
member. Given the object identifier of aFaculty object,
we should be able to retrieve personal information as well
as the object identifiers of the faculty member’s department,
advisees, and courses taught.

A gmap that meets these specifications may be defined
as follows (Fig. 2):

def_gmap faculty_data as heap by
given Faculty select Student, Dept,
Course, Faculty.area, Faculty.name
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Fig. 2. The faculty class extent
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where Faculty works_in Dept and
Faculty advises Student and
Faculty teaches Course

A secondary index in a relational system can also be
defined easily in our language. For example, an index on
the faculty area is defined as follows (Fig. 3):

def_gmap faculty_index_on_area as btree
by given Faculty.area select Faculty

Note that the index is not defined in terms of the previous
gmap, as would be the case in a relational database, but in
terms of the logical schema.

In thefaculty data example, it might be desirable to
include in a faculty member’s record the department name in
addition to the department id, because for example, the de-
partment name is frequently printed along with the name
of the faculty member. The department name is, in this
case, anested attributeof theFaculty domain. This essen-
tially implementsfield replication(Kato and Masuda 1992;
Shekita and Carey 1989), which has been shown to offer
several advantages. The only change necessary is to add
“Dept.name ” to the select clause. Only a slight modi-
fication of the earlier gmap definition is required (Fig. 4):

def_gmap faculty_field_repl as heap by
given Faculty
select Faculty.name, Faculty.area,
Dept, Student, Course, Dept.name
where Faculty works_in Dept and

Faculty advises Student and
Faculty teaches Course

Similarly, suppose applications frequently ask for the
listing of the faculty of a specific department. In this case
we need a fast access path from the department name to
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the faculty domain. A structure for accelerating such path
expressions is called anested index(Maier and Stein 1986;
Bertino and Kim 1989), which allows indexing on a nested
attribute of a domain. Such an index is easily specified as a
gmap (Fig. 5):

def_gmap faculty_nested_index as btree
by given Dept.name select Faculty
where Faculty works_in Dept.

In the previous examples, the gmap data included all
Faculty instances. However, there are cases where we
frequently access only some instances of a domain. Object-
oriented systems that store instances in explicit collections
rather than class extents (Carey et al. 1988; Maier and Stein
1986; Orenstein et al. 1992) allow the creation of collection
indices, which provide fast access paths only to the subsets
of the domains that are included in the collection. Our gmap
definition language is powerful enough to express such in-
dices by using restrictions. For example, if we would like
to modify the previously defined index on faculty area so
that it keeps only data for faculty in the computer science
department, the definition would be as follows (Fig. 6):

def_gmap faculty_index_on_area as btree
by given Faculty.area select Faculty
where Faculty works_in Dept and

Dept = cs_oid

wherecs oid is the object identifier of the computer sci-
ence department.

Field replication and path indexing techniques typically
impose restrictions related to the logical schema. For exam-
ple, in field replication, the nested attribute is required to
be a nestedpart of the object in which it is replicated. Fur-
thermore, the object must functionally determine the nested
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Fig. 7. Replication of a non-functional nested attribute

attribute. Similar restrictions hold for path indexing. Our no-
tion of queries enables one to describe any schema subgraph,
independently of the edge properties. The extra freedom al-
lows specification of several useful novel structures:

– A storage structure that replicates nested attributes that
are non-functionally determined. For example, we can
extend thefaculty data structure (Fig. 2) by repli-
cating the names of the advised students (Fig. 7):

def_gmap faculty_field_with_snames
as heap by given Faculty

select Faculty.name, Faculty.area,
Dept, Student, Course, Student.name
where Faculty works_in Dept and

Faculty advises Student and
Faculty teaches Course

– A cross between a path index and an index on a com-
posite key. It allows each component of the key to be
supplied by a separate path. For example, the following
gmap builds an index that maps area/course-level pairs
to faculty in that area that teaches such courses (Fig. 8):

def_gmap faculty_multi_field as btree
by given Faculty.area, Course.level
select Faculty
where Faculty teaches Course.

– An arbitrary decomposition of data in the inheritance
hierarchy. For example, the following gmap clusters a
teaching assistant’s name together with other teaching
assistant attributes that do not pertain to arbitrary stu-
dents (Fig. 9):

def_gmap ta_with_sname as heap by
given TA
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select TA.level, Course,
Student, Student.name
where TA isa Student and

TA assists Course

A complete taxonomy of existing indexing schemes and
other advanced storage structures that can be defined by us-
ing gmaps is presented elsewhere (Tsatalos and Ioannidis
1994).

3 Query translation

In this section we present the translation algorithm of a log-
ical query into queries over gmaps. We first introduce some
additional notation and definitions, and also discuss two aux-
iliary problems that arise as part of query translation.

3.1 Notation

For convenience, we represent a logical psj-queryQ =
πQσQ(R1 on · · · on Rk) as a triple〈Qr, Qs, Qp〉 of sets.
Qr is the set of joined binary relations{R1, . . . , Rk}, Qs

is the selection predicateσQ represented as a set of simpler
predicates (comparisons between attributes and constants),
andQp is the set of attributes retained by the projectionπQ.
We call the setQp the query target, and its memberstar-
get attributes. Consider for example the following queryQ
(Fig. 6):

given Faculty.area select Faculty
where Faculty works_in Dept and

Dept = cs_oid

Q is a psj-query: if we callRab and Rbc the base rela-
tions corresponding to theFaculty.area andworks in

relationships, respectively, anda, b, c the attributes corre-
sponding to the domainsFaculty.area , Faculty and
Dept , respectively, then we can rewrite the query asQ =
πab σc=cs oid(Rab on Rbc). Using our notation,Q can be rep-
resented as the triple:〈{Rab, Rbc}, {c = cs oid }, {a, b}〉.
(Recall thatFaculty.area is overloaded to refer both to
an attribute and to a relationship.)

Given a queryQ, we frequently deal with its part that
includes only relations in a setR, and its part that includes
only relations not inR. These are denotedQ[rel ∈ R] and
Q[rel 6∈ R] respectively. For example,Q[rel ∈ {Rbc}] =
〈{b}, {c = cs oid }, {Rbc}〉 = πb σc=cs oidRbc. Similarly,
the subset ofQs that mentions only attributes in a setA
is denotedQs[attr ∈ A]. Finally, the set of attributes in a
set of relationsR is denotedA(R).

3.2 Definitions

The natural join of two psj-queriesP andQ, denotedP on
Q, is the natural join of their result relations. Theadd-join
of two psj-queriesP andQ, denotedP ⊕Q, is the psj-query
P ⊕Q = 〈Pr ∪Qr, Ps ∪Qs, Pp ∪Qp〉. The add-join differs
from the natural join in that it naturally joins the two query
results before any projection has taken place. The projection
step is applied after the join and retains all columns that
would have been retained by either query. Thus, the same
set of columns as in the natural join are produced.

Note that, in general, if we only have the query results in
hand, the add-join cannot be calculated since it may require
knowledge of some of the missing columns. Consider for
example the queriesQ1 = Rab andQ2 = πac (Rab on Rbc).
The natural join ofQ1 andQ2 is Rab on πac (Rab on Rbc),
while their add-join is simplyRab on Rbc. In general the two
expressions will produce different results and the add-join
may not even be producible from the results ofQ1 andQ2
alone (since theb attribute is missing from the result ofQ2).

Let Rab, Rbc be two relations with a common attribute
b. An inclusion dependencyfrom Rab to Rbc exists, denoted
Rab.b ⊆ Rbc.b, if every value ofb in Rab appears also in
Rbc.

3.3 Query equivalence

When translating a logical query into a query over gmaps,
we often need to test the equivalence of psj-queries. Two
psj-queriesQ1 andQ2 are equivalent, denotedQ1 ≡ Q2, if
they produce the same result for any valid instance of the
database schema. Equivalence testing of arbitrary conjunc-
tive queries, even without taking into account any dependen-
cies, is NP-complete (Aho et al. 1979; Chandra and Merlin
1977). On the other hand, we can efficiently compare two
psj-queries syntactically to see if they are identical (up to
trivial differences such as the ordering of the join terms).
This is a sufficient condition for equivalence, which we use
in our translation algorithm. We are also interested in two
special cases of equivalence testing, where psj-queries of
specific forms are involved and various types of dependen-
cies are taken into account. These are discussed in the next
two subsections, where sufficient conditions for equivalence
are provided.
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3.3.1 Coverage

A queryQ coversa set of relationsR if

Q[rel ∈ R] ≡ πA(R)(Q) (1)

i.e., when the subquery involving only the relations inR
is not affected by the rest of the query. For example, if
Rab ≡ πab(Rab on Rbc), thenRab on Rbc covers{Rab}.
In general, the left-hand side of (1) is a superset of the
right-hand side. When (1) holds, the part of the query that
involves relations not inR (relationRbc in our example)
has no effect onπA(R)(Q), in the sense that it does not filter
out any tuples produced by the rest of the query. An al-
gorithm that implements necessary and sufficient conditions
for testing coverage is presented elsewhere (Tsatalos 1994).
The algorithm makes use of the inclusion dependencies of
the schema.

3.3.2 Natural join versus add-join

In general, ifQ1 andQ2 are two psj-queries,Q1 ⊕ Q2 ⊆
Q1 on Q2. However, in the presence of certain integrity con-
straints,Q1 ⊕ Q2 ≡ Q1 on Q2. For example, consider the
queriesQ1 = Rab andQ2 = πac (Rab on Rbc). In general,
Q1 on Q2 = Rab on πac (Rab on Rbc) is not equivalent to
Q1 ⊕ Q2 = Rab on Rbc. If, however,b is functionally de-
termined bya in Rab (that is,a is a key forRab) the two
joins are equal. Intuitively, the information “lost” by pro-
jecting away theb attribute inπac (Rab on Rbc) on Q can
be completely recovered from the remaining attributes (a in
this case).

Detecting when the natural join of two psj-queries is
equivalent to a psj-query is very important in our query trans-
lation algorithm, since it allows us to rewrite the join of two
gmaps (which are psj-queries) as a psj-query. The algorithm
iteratively performs such rewritings in order to express the
join of several gmaps as a psj-query, which is then checked
syntactically for equivalence with the user query. As a suf-
ficient condition for guaranteeing that the natural join of
two queries is a psj-query, we test if it is equivalent to the
add-join of the queries in question. An algorithm that im-
plements a sufficient condition for testing this equivalence
is presented elsewhere (Tsatalos 1994).

3.4 Query translation algorithm

Below we present an algorithm to translate a logical psj-
query into queries over gmaps. For the sake of clarity we
defer most efficiency considerations to Sect. 4.

Algorithm 1. Given a psj-queryQ and a set of psj-queries
G , find subsets{G1, . . . , Gn} ⊆ G , such that
Q ≡ πQpσQs

(πA(Qr)G1 on · · · on πA(Qr)Gn)

1. let H = {G ∈ G such thatGp ∩A(Qr ∩Gr) /= ∅ and
2. Qs[attr ∈ A(Gr)] = Gs[attr ∈ A(Qr)] ∪ Qs[attr ∈

Gp] and
3. G coversQr}
4. for each subset{G1, ..., Gn} of H do

5. let S = {πA(Qr)σQsG1, . . . , πA(Qr)σQsGn}
6. while there isG,H ∈ S such thatG on H ≡ G⊕H
7. replaceG andH in S byG on H
8. if S = {Q′} whereQ ≡ πQp

(Q′) then accept{G1, ...,
Gn} as a solution

The algorithm first narrows down its search space to
gmaps that have something to do with the query (lines 1–3).
More specifically, a gmap must have at least one relation
in common with the query, with at least one attribute of
that relation included in the gmap result (line 1); the query
selections on attributes of the gmap relations must be either
on the target attributes of the gmap (so that they can be
applied on them) or identical to selections that the gmap
itself has (line 2); the gmap must cover the relations that it
has in common with the query (otherwise, the gmap will not
have all the information needed by the query; line 3).

Each possible subset of the relevant gmaps (line 4) gives
rise to a single candidate translation (assuming that selec-
tions are always pushed through the joins):

πQp
(πA(Qr)σQs

G1 on · · · on πA(Qr)σQs
Gn) (2)

The rest of the algorithm tests whether or not this query
expression is equivalent to the given logical query. Each
join operand in (2) is a projection and a selection on a gmap.
Since we verified earlier (line 2) that the query selections can
be pushed through the gmap projections, the join operands
are psj-queries. The algorithm tries to express their join as
a psj-query as well. The join operands are scanned (line 5)
and any pair whose natural join is equivalent to its add-join
(line 6) is replaced by a single join operand which is again
a psj-query (line 7). The set of join operands thus keeps
reducing. At some point, the set can no longer be reduced,
either because there is just one psj-query left or because
there is no pair that satisfies the equivalence test (line 6).
In the former case, the remaining psj-query is equivalent
to the initial join expression (2) after performing one final
projection step (πQp

) and can be syntactically checked for
equivalence (line 8) with the logical query. In the latter case,
the subset chosen in line 4 is rejected.

Proposition 1. Given a psj-queryQ and a set of psj-queries
G , each subset{G1, . . . , Gn} ⊆ G generated by Algorithm
1, satisfies the condition:

Q ≡ πQpσQs (πA(Qr)G1 on · · · on πA(Qr)Gn)

Because there are exponentially many subsets ofH , Al-
gorithm 1 requires exponential time. However, checking if
a given subset of gmaps can form a solution (lines 5–8)
takes polynomial time. In the next section, we show how
we can run the algorithm in conjunction with a conventional
optimizer to avoid enumerating all subsets.

An example may help illustrate the algorithm. Consider
a queryQ that asks for the names and department id’s of
students attending all 500-level courses:

def_query Q by select Student.name,
Dept where Student attends Course

and Student enrolled Dept
and Course.level = 500
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In our formal representation,
Qr = {attends, enrolled, Course.level },
Qs = {Course.level = 500}
and
Qp = {Student.name, Dept }.

Suppose the database consists of three gmaps: an index
G1 from the names of students to their departments, an index
G2 from the names of students to courses that they attend and
the levels of those courses, and an indexG3 from a course-
level to courses at that level, together with the departments
that supply students to those courses.

Their definitions follow:

def_gmap G1 as btree by
given Student.name select Dept
where Student enrolled Dept

def_gmap G2 as btree by
given Student.name select
Course, Course.level
where Student attends Course

def_gmap G3 as btree by
given Course.level select Dept,

Course
where Student attends Course
and Student enrolled Dept

All three gmaps are relevant to the query (they pass the
tests of lines 1–3). Consider, for example,G = G2. Written
as a triple,G = 〈{Student.name, Course, Course.
level }, ∅, {Student.name, attends }〉. Line 1 is sat-
isfied by the attributeCourse which appears both inGp

and in the relationshipattends shared byGr andQr. For
line 2, note thatGs = ∅, andQs[attr ∈ Gp] = Qs[attr ∈
A(Gr)] = {Course.level = 500}. To check thatG cov-
ersQr (line 3), note thatG[Qr] is G modified by the re-
moval of Student.name (both as an attribute inGp and
a relationship inGr). If we assume that everyStudent
has aname, G[Qr] is equivalent toπA(Qr)(G), which is the
result of projecting out theStudent.name attribute from
G.

The algorithm considers subsets of the relevant gmaps
G1, G2, G3. Consider, for example, the subset{G1, G2}.
The candidate solution corresponding to this combination
is the natural join ofG1 and G2 followed by a selec-
tion for Course.level = 500 followed by a projection.
The loop of lines 6 and 7 will be executed once to check
whetherG1 on G2 ≡ G1 ⊕ G2. This test will fail unless
Student.name functionally determinesStudent ; oth-
erwise, two tuples that join on theStudent.name need
not join on theirStudent id as well. If Student.name
functionally determinesStudent , then the join on the
Student id is irrelevant: we can project out that attribute
before performing the join, which implies that the add-join
is equivalent to the natural join (line 6). Assuming that this
is the case, line 8 of Algorithm 1 eventually concludes that
the candidate solution is a correct one.

Following the same process, the algorithm rejects the
subsets{G1, G3} and{G2, G3}, because the corresponding
add-join and natural join are different. However, the combi-
nation{G1, G2, G3} is a correct solution. During the course

of the loop of lines 6 and 7, the algorithm tests all pairs
of gmaps in this subset to check whether or not their add-
join is equivalent to their natural join. As we saw, all the
pairs fail, except forG1⊕G2. In the next iteration, the pair
(G1 ⊕ G2, G3) is considered and the algorithm verifies that
(G1 ⊕G2) on G3 ≡ (G1 ⊕G2)⊕G3.

Interestingly, the solution using all three gmaps is likely
to be more efficient than the one that uses onlyG1 andG2,
because the index onCourse.level in G3 will accelerate
the selection in the query. The next section shows how a
gmap-equipped optimizer identifies and prunes the inferior
plan.

4 Integration with a query optimizer

The presentation of Algorithm 1 emphasizes clarity at the
expense of efficiency. It implies that all subsets of the gmaps
are enumerated in random order and each is tested to see if
it provides a solution to the equation. All subsets that pass
the test are feasible plans. The version of the algorithm that
is actually implemented by our system is considerably more
sophisticated. It is integrated with a conventional dynamic-
programming query optimizer (Selinger et al. 1979), which
controls the order in which subsets are evaluated and uses
cost information and intermediate results to prune the search
space.

A conventional dynamic-programming optimizer itera-
tively finds optimal access plans for increasingly larger parts
of a query. We follow these steps in more detail, showing
at each step what needs to be changed for a gmap-equipped
database (Table 1). We then identify the pieces of Algo-
rithm 1 that correspond to these changes. In what follows,
for simplicity, we avoid any discussion of “interesting or-
ders” (Selinger et al. 1979). We also use the termcomplete
solution to refer to a gmap access plan (i.e., a specific se-
quence of joins, together with the method used for each join)
that is equivalent to the logical query, andpartial solution
for a gmap access plan that could potentially be enhanced to
become a complete solution. A partial solution does not nec-
essarily have to be a psj-query; it may be that no reordering
of its joins makes them equivalent to add-joins.

Like a conventional optimizer, the gmap optimizer only
attempts to join a partial solution with gmaps that share pro-
jected attributes with it, thus avoiding Cartesian products.
Each step in the gmap optimizer corresponds to a part of
Algorithm 1. Step (a1) of the first iteration corresponds to
lines 1–3 of Algorithm 1; it finds all gmaps that are relevant
to the query. The remaining steps of all iterations represent
the rest of the algorithm. Moving from iteration to iteration,
step (c) of each iteration corresponds to a specific imple-
mentation of line 4, where all subsets of relevant gmaps that
are not pruned on the way are explored in increasing size.
After the first iteration, step (a1) forms the joins of these
subsets (solutions) and step (a2) corresponds to lines 6–8,
where these solutions are examined for completeness. Step
(a2) can be implemented incrementally taking into account
the results of earlier iterations on smaller partial solutions.

Note that step (b) of each iteration has no counterpart in
Algorithm 1 because it deals only with pruning the search
space and not with translation. Implementing this step is
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Table 1. Step by step comparison of a conventional optimizer versus one designed for a gmap-equipped database

Conventional optimizer gmap optimizer

Iteration 1 Iteration 1

For each query relation:
a) Find all possible access paths. a1) Find all gmaps that are relevant to the query.

a2) Distinguish between partial and complete solutions among them.
b) Compare their cost and keep the least expensive. b) Compare all pairs of gmaps. If one has neither a greater contribution

to the query nor a lower cost than the other, prune it.
c) If the query involves only one relation, stop.c) If there are no partial
solutions, stop.

Iteration 2 Iteration 2

For each query join:
a) Consider joining the relevant access paths found in the previous
iteration using all possible join methods.

a1) Consider joining all partial solutions found in the previous iteration
with another gmap using all possible join methods.
a2) Distinguish partial and complete solutions among resulting joins.

b) Compare the cost of the resulting join plans and keep the least
expensive.

b) Compare each newly generated solution to all other solutions. If any
single gmap or gmap combination has neither a greater contribution to
the query nor a lower cost than another, prune it.

c) If the query involves only two relations, stop. c) If there are no partial solutions, stop.

Iteration 3 Iteration 3
· · · · · ·

not straightforward because it involves not only the cost but
also the contribution of solutions to the query. Contributions
of partial solutions can be compared on the basis of their
pieces that correspond to psj-queries and the set of attributes
in their result. When each piece of a partial solution has
subsets of the relations and projected attributes of a piece of
another partial solution, then the former contributes less and
can, therefore, be removed from further consideration if it
also has a higher cost. Query signatures, an encoding of the
names of all the relations used by the query, can be used to
perform these comparisons efficiently (Finkelstein 1982).

It is interesting to see how the new algorithm behaves
when it is given a set of gmaps that represents a traditional
relational physical schema. Assume, for example, that one
gmap is a file containing the extent of theFaculty relation
with all associated attributes,

def_gmap faculty_relation as heap by
given Faculty select Faculty.name,
Faculty.area, Dept
where Faculty works_in Dept

while another gmap is a secondary index on theFaculty.
area field,

def_gmap faculty_index_on_area as btree
by given Faculty.area select Faculty

Assume that the logical query requests the names of all
faculty in the database area. During the first iteration both
gmaps are considered. Scanning the relation extent would
be far more expensive than accessing the index, but the two
solutions are not comparable. Since the index simply re-
turnsFaculty ids, it is not adequate to answer the query,
while the extent is. During the second iteration, the index
(the only partial solution left) is considered for a join with
theFaculty extent. The join would be less expensive than
scanning theFaculty extent, while both plans are equiv-
alent to the logical query. Thus, the solution found during
the first iteration is eliminated in the second. At this point,

there is no partial solution left and the algorithm ends. This
example demonstrates that access plans that are pruned in a
conventional optimizer are also pruned in its enhanced ver-
sion. However, since an access plan considered at iteration
n in the conventional version may combine more thann
gmaps, it may be considered at a later iteration in the en-
hanced version, thus delaying potential prunings. In general,
we expect the performance of the modified optimizer to be
similar to the performance of the conventional one. Our ex-
perience obtained by using the optimizer for the examples
shown in Sect. 8 supports the prediction.

5 Update propagation

Relational systems mitigate dependencies between the logi-
cal and the physical schema through the use of stored queries
defining “virtual” relations calledviews, and users express
their queries in terms of these views. With this approach, the
logical schema becomes a (relational) function of the phys-
ical schema. View updates, however, are difficult or impos-
sible to support. The usual solution is to require updates to
be expressed in terms of the underlying schema.

Our approach is the inverse of the above. We define
the physical structures as functions of the logical schema.
Although query translation becomes more complicated, we
have shown above that it is still feasible and can be inte-
grated with the optimization stage of a conventional system,
adding little overhead to the preparation of query plans and
no overhead to the execution of those plans. In addition, up-
dates become much simpler. Translating them into the phys-
ical schema turns into the materialized view maintenance
problem, which admits simple solutions.

As discussed elsewhere (Blakeley et al. 1989), propagat-
ing updates into materialized views requires the execution
of queries over the base relations and the inserted or deleted
tuples. However, here we do not necessarily have the base
relations stored, and the actual data may be replicated in
many places.



109

In this, section we first describe how alogical update
can be specified, and the restrictions that it must obey. Then
we show how the logical update can be translated into a
physical update over gmaps, and how this translation can be
integrated with the query optimizer to offer a general pur-
pose update propagation mechanism. Finally, we illustrate
the update propagation process using an example.

5.1 Specifying updates

Insertions are specified by supplying a query (theupdate
query) and a set of tuples to be inserted (theupdate data),
corresponding to the target attributes of the query. The
database must be updated in such a way that the change
in the results of the query between the original and updated
database is precisely the set of tuples in the update data.
Deletions are defined similarly, with the roles of “original”
and “updated” database reversed. Note the difference from
the query used when specifying updates in SQL-like lan-
guages, in which the query is used to generate the update
tuples. The query here describes only the “schema” of the
tuples. Since the update data can be the result of another
query, no generality is lost.

For example, students can become enrolled in courses
by supplying a set of (StudentId, CourseId) pairs and the
update query

def_query enroll_student as
select Student, Course
where Student attends Course

Describing the schema of the update using a query, al-
lows us to support updates that do not depend on a specific
physical schema. For example, relational databases allow the
insertion of entity instances because they assume the exis-
tence of an entity extent. Object-oriented systems also have
similar restrictions. In our case, by describing the update as a
logical query we avoid any physical data dependence. How-
ever, it is is not our intention to support updates defined by
arbitrary queries, since that could lead into the view update
problem. We only want to use the query to define a pattern
on the logical schema which represents the “schema” of the
update. Thus we need to impose the following restrictions:

No selections.If selections were allowed, they could only
supply information that would be redundant to or in-
consistent with the update data. For example, the update
query

def_query define_undergraduate_courses
as select Course, Course.name,
Course.level
where Course.level < 700

merely states that all tuples in the update data have a
level field containing a value less than 700.

No projections.All attributes of the query relations must be
included in its target. For example, an insertion request
defined by the query

def_query add_graduate_student as
select Student.year, Course
where Student attends Course

and the update data{ [5, cs764]} requests that after the
update, there should be an additional 5th-year student
taking the course with the indicated id, but gives insuf-
ficient information to construct such a student. Such an
update has ambiguous semantics and thus should not be
allowed.

No tuple-generating dependencies.The relation defined by
the update query should not satisfy any tuple-generating
dependencies Ullman 1988). For example, the relation
defined by the update query

def_query assign_work_to_faculty as
select Faculty, Student, Course
where Faculty advises Student

Faculty teaches Course

satisfies the multivalued dependencyFaculty →→
Student . If the faculty memberF was teaching course
C1 before the update, the tuple [F, S,C2] cannot be
added without also adding [F, S,C1]. If the update data
included only the first of these tuples, there would be no
way to perform the update according to the semantics
defined above.

Even with these restrictions, we cannot completely guar-
antee the validity of an update. For example, if we have not
defined any gmap to storeFaculty data, an insertion of a
Faculty tuple would be invalid. If we use a single gmap
to store theFaculty and theDept data, then we will
not be able to insert a faculty member who does not work in
any department. Although the semantics of the update query
depends only on the logical schema, its validity may depend
on the choice of gmaps used to define the physical schema.
In particular, the physical schema must have sufficient “in-
formation capacity” to hold the inserted data (Miller et al.
1993). These issues are not addressed in this paper and are
a subject of the authors’ ongoing research. Furthermore, we
do not address the question of whether the update conforms
with the integrity constraints of the database. Specific gmap
structures or gmap combinations may help accelerate testing
the integrity constraints. However, here, we assume that an
external mechanism verifies that the updates do not conflict
with existing functional or inclusion dependencies.

5.2 Update translation

Consider an update queryU and a gmap queryG that have
some relations in common, i.e.,Ur ∩ Gr /= ∅. Our goal is
to calculate the effect of the update on the data stored inG.
Given the restrictions that we imposed on the update query,
notably the fact that the update queryU may not contain
any projections or selections, we can easily factorG as

G = πGp
σGs

(U on I) (3)

where I is the part of the gmap that is irrelevant to the
update:

I = 〈Gr − Ur, Gs[A(Gr − Ur)],

A(Gr − Ur) ∩ (Gp ∪A(Ur))〉
While complicated, this formula is essentially the same as
G[rel 6∈ Ur]; the only difference is that the projection step
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of I retains additional attributes in the target, to make sure
that all needed columns join withU .

Equation (3) allows us to calculate the tuples needed to
be inserted or deleted from the gmapG using only the data
in the database before the update and the update itself. If we
view G andU as the multisets of tuples that are produced
by the queriesG and U (assume that multiset projection,
selection and join operators are used in the queries), respec-
tively, and we use the subscriptsold andnewto refer to sets
produced before and after the update, then we can rewrite
Eq. (3) as

Gnew = πGp
σGs

(Unew on Inew)

= πGp
σGs

((Uold +∆U ) on (Iold +∆I))

where “+” represents union of multisets if the update is an
insertion, and multiset difference if the update is a deletion.
Since I is irrelevant to the update,∆I = ∅. Furthermore,
multiset projection, selection and join, distributes over mul-
tiset union and difference yielding the following:

Gnew = πGp
σGs

((Uold +∆U ) on Iold)

= Gold + πGpσGs (∆U on Iold)

Finally, sinceI is a psj-query, it can be translated using
Algorithm 1 into a query expression over gmaps. Thus, the
change∆G of the gmap contents can be produced by the
query

∆G = πGpσGs

(∆U on πIpσIs (πA(Ir)G1 on · · · on πA(Ir)Gm)), (4)

which only uses existing gmaps and the update data.
Equation (4) can be used for deletions as well as inser-

tions if the gmaps whose target does not functionally deter-
mine their other attributes maintain their data as multisets
(that is, they record duplicates or multiplicities).

5.3 Update propagation algorithm

Below we present the update propagation algorithm which
uses the translation mechanism described above. For the sake
of clarity we defer most efficiency considerations to the end
of this section.

Algorithm 2. Given a logical update specified by the update
queryU and a set of gmapsG , find the update that needs to
be performed on each of the gmaps inG .

1. for eachG ∈ G do
2. let I = 〈Gr −Ur, Gs[A(Gr −Ur)], A(Gr −Ur)∩ (Gp

∪A(Ur))〉
3. if I ≡ G then continue // no update is needed
4. translateI into a queryQ over gmaps inG using

Algorithm 1
5. execute the queryπGpσGs (U on Q)
6. insert/delete all tuples generated by the query into/from

G

For each gmapG, the algorithm first identifies the partI that
is irrelevant to the update (line 2). If the whole gmap is irrel-
evant, no update propagation is needed (line 3). Otherwise,

we use Algorithm 1 to translateI into a query expression
over gmaps (line 4). The update data are joined with the
result of this query, producing a multiset of tuples (line 5).
If the update is an insertion, the tuples are inserted intoG;
otherwise they are deleted fromG.

There are a few performance issues that we need to ad-
dress. First, the translation ofI is performed through the
enhanced query optimizer. The optimizer guarantees that the
produced plan will be optimal: any available gmap that can
accelerate queries can also be used to accelerate the per-
formance of updates. Second, in many applications, there is
a fixed set of logical updates that are used regularly (such
as courses being created or students enrolling). These com-
mon update queries can be translated in advance and stored
as query plans. They only need to be recompiled when the
update query or the physical schema changes.

Finally, the algorithm presented above requires that the
update gmap holds the leftmost position in the join tree,
which may not be the optimal join order. For example, if
we are inserting a large number of tuples, it would not be
advisable to load the update gmap first. Since, however, we
have modeled the update as a gmap, we can let the query
optimizer select the appropriate join order for that gmap as
well. For this, the query optimizer needs to be extended
with the notion of arequired gmap which should be used
in any plan produced by the optimizer. Then, for the update
translation, we can flag the update gmap as required and use
it together with the remaining database gmaps to compile
the gmap queryG.

5.4 Update example

We illustrate the algorithm above with an example. Consider
the update queryenroll student presented earlier:

def_query enroll_student by
select Student, Course
where Student attends Course

Assume that our database consists of two gmaps, one that
maps faculty members to courses that they teach,

def_gmap FC as btree by
given Faculty select Course
where Faculty teaches Course

and one that records the students and teacher of each course,

def_gmap CFS as btree by
given Course select Faculty, Student
where Faculty teaches Course and

Student attends Course

To propagate the update to the database, we consider each
database gmap separately. The gmapFC is not affected by
the update since it has no common relations with the update
query. The updates to gmapCFSdepend both on the update
data and on the existing contents ofFC. We need to append
to each(CourseId, StudentId)pair in the update data the
faculty member who teaches the course before it is added to
CFS. The algorithm constructs the tuples to be inserted by
considering the part of the gmap that is not affected by the
update, i.e., the query
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def_query Q by select Course,
Faculty where Faculty teaches Course

and finding a translation for it. QueryQ can definitely be
answered by using gmapFC, and thus the tuples to be
inserted intoCFS are found by joining the update gmap
enroll student and the gmapFC. gmapCFScannot be
used as the source of the needed information becauseCFS
will not contain(CourseId, FacultyId)pairs for courses that
do not yet have any students. Line 3 of Algorithm 1 tests
whetherCFScovers the relationteaches . As long as there
is no inclusion dependency fromteaches to attends ,
the CFS gmap will be rejected.

6 Applications

In Sect. 2, we demonstrated how gmaps subsume the facili-
ties of primary and secondary storage structures in conven-
tional database systems. In this section, we outline a variety
of other applications that use the integrated query translation-
optimization engine for queries and updates.

6.1 Database loading

Existing databases often provide special features to support
bulk loading of data. These facilities tend to be ad hoc and
impose restrictions on the format of the imported data. The
user must manually translate all imported data into files that
match the primary storage structures and then load each one
individually.

If the imported data can be described as a psj-query on
the logical schema, initial loading can be viewed as a spe-
cial case of physical schema evolution. The imported data
files can be viewed as inefficient gmap structures. The “real”
gmaps used to store the data permanently are loaded by
running their queries against the imported files. For exam-
ple, to run the experiment described in Sect. 8, we popu-
lated our department database with data from a variety of
sources. Course enrollments were retrieved from an IMS
database maintained by the registrar. Faculty advising data
were found in an Ingres database. TA assignments were kept
in a hand-maintained ASCII file, and so on. All these data
were dumped into Unix files in a simple textual format. We
then wrote a set of interface functions that allowed us to
view these Unix files as a new gmap structure. The func-
tions allowed iteration through the tuples and statistics in-
quiries (such as a count of tuples) for the benefit of the query
optimizer. During loading, all data were automatically com-
bined (e.g., joined and projected) to match their final formats
and then bulk-loaded into the storage structures. The query-
processing engine guaranteed that all data were processed
optimally.

6.2 Database interoperability

In the previous paragraph, we showed how to create a thin
“veneer” over Unix text files to make them behave like
gmaps. For purposes of bulk loading, a simple read-only

interface sufficed, but we could have added functions for in-
serting, deleting and associatively accessing tuples in these
files. In short, with very little work, a text file can be made
to emulate a gmap. This idea can be extended to support het-
erogeneous storage organizations by hiding their differences
under the gmap abstraction. As long as the data contents
of all these distinct sources can be described by psj-queries
over a single logical schema, the query optimizer can trans-
late logical queries into access plans over them. This strategy
has many similarities with the ADMS system (Roussopou-
los 1993) which uses the concept of view indexing (Rous-
sopoulos 1982) to efficiently represent materialized views,
together with a semantic query optimizer to support database
interoperability.

6.3 Main memory caching

Another application of gmaps is to support cached data in
transient main-memory data structures such as arrays or hash
tables. If the contents of the structure can be described by
a psj-query on the logical schema, it can be treated like a
gmap. The fact that it is not persistent simply means that its
data must be replicated in other (persistent) gmaps. Many
database applications cache parts of the database, but be-
cause of restrictions in data replication, these data cannot be
part of the physical schema, and thus have to be accessed
and maintained manually.

6.4 Accelerating complex structure updates

Although path indices are useful for accelerating common
queries, they are expensive to maintain. Previous proposals
for both nested indices and field replication suggest including
links along the indexed path to be used during update prop-
agation to accelerate the joins required. In both cases, the
data structures and the algorithms for maintaining them are
custom-made for the application. We can achieve the same
effect by using simple gmaps along the paths that need to
be traversed during the update propagation. Gmaps placed
at points where expensive joins are performed act like join
accelerators in the same way that internal links accelerate
joins. In addition, they are much more versatile in that they
can be used by arbitrary queries that involve these joins since
they are not tied to any specific larger structure.

Suppose, for example, that we use a heap to store course
data and also replicate the name and department name of the
faculty member who teaches each course:

def_gmap course_data as heap by
given Course
select Course.name, Course.level,
Faculty.name, Dept.name
where Faculty teaches Course and

Faculty works_in Dept

When faculty members move to a different department,
we need to update the course data for all their courses.
Shekita and Carey (1989) suggest adding backward links
from faculty to their respective courses; in effect, advocat-
ing a pointer-based join.



112

We propose, instead, to add a gmap from faculty to
courses:

def_gmap courses_index as hash_table
given Faculty select Course
where Faculty teaches Course

Although the performance of this approach may not match
that of a pointer join [it has been shown that pointer joins
are generally faster than joins accelerated through an external
index (Carey et al. 1990)], it offers significant advantages.
First, the gmaps can be used not only for updating the struc-
ture but by any other query as well. Second, if usage patterns
change so that maintenance of the accelerator is not bene-
ficial, we can simply remove it. In the hardwired approach,
we will always be stuck with the same machinery. Finally,
our approach allows the user to place join accelerators at
individually chosen points. It is much harder to achieve this
flexibility with the hardwired approach.

6.5 Support for complex objects

Using update queries to describe the schema of the modified
data facilitates the handling of complex objects. A com-
plex object insertion can be described as an update gmap
whose query describes the complex object schema. If the
inserted object consists of several tuples of data, the tuples
are not inserted one at a time. Instead, the query plan treats
the update gmap like any other physical data container and
performs bulk operations. The result of the query plan ex-
ecution is a set of tuples to be inserted into each physical
storage structure. Any available bulk-loading interfaces to
these structures can be exploited.

7 Implementation

To verify the applicability and practicality of our algorithms
and obtain a feeling for their performance, we built a proto-
type implementation of our system on top of SHORE (Carey
et al. 1994). SHORE is an object-oriented database system
under construction at the University of Wisconsin-Madison.

We extended SHORE with facilities to support gmaps
and translate and execute queries and updates. Logical
schema definitions are parsed and stored in a logical-schema
catalog. Physical storage structures are created from gmap
definitions. Parsed gmap queries are stored persistently in
a second physical-schema catalog. The data organization,
keys, and record format are also determined by the gmap
definitions. Gmaps are created and populated by processing
update requests.

We have built a query processor using the algorithms in
Sects. 3 and 4. For all the examples presented in this pa-
per, query translation adds only a negligible overhead to the
overall query cost. The query processor also contains hooks
to support the update processor, as outlined in Sect. 5. The
update processor accepts three lists of gmaps: update gmaps,
target gmaps to be updated, and database gmaps that may be
used to supply data for the updates. For simple updates, the
first list contains just one gmap, and the target and database

Table 2. Parameters of the database

Faculty Students Courses TAs Depts
Instances 5000 50 000 10 000 2000 100
KB/inst 1 0.8 1 0.85 3

lists each contain all the gmaps in the physical-schema cat-
alog. Other combinations of arguments support other appli-
cations described in Sect. 6.

We have designed a simple common interface to allow
a variety of storage structures to emulate gmaps. This inter-
face includes operations to store and retrieve data and make
cost inquiries. We have created implementation for existing
SHORE facilities (B+-trees and heaps) as well as Unix files
(for importing and exporting data) and main-memory struc-
tures (for update gmaps). To support the use of the algorithm
in Sect. 5 for deletions, we have also modified the SHORE
B+-tree facility to maintain a count of duplicate insertions.

8 A performance demonstration

In this section, we describe experiments with a test database
that illustrate that for a plausible mix of queries and updates,
our techniques can provide better performance than either
relational or object-oriented databases. As we observed in
Sect. 2, gmaps can be used to describe the relations and
the primary and secondary indices of relational databases,
as well as the class extents, object sets, and path indices
of object-oriented databases. Thus, we are able to use our
system to simulate two “conventional” configurations; one
based on a normalized relational design and one following a
typical object-oriented database design. All of our results are
reported in terms of counts of I/O operations, since absolute
performance in “real” databases would be affected by a va-
riety of implementation-dependent features that are beyond
our control.

In the experiment, we used an extended version of the
university database presented earlier. We populated one de-
partment with actual data describing the computer science
department at the University of Wisconsin-Madison and gen-
erated synthetic data for 99 more departments to create a
database of reasonable size. While the actual database used
for the experiment includes additional fields, for simplic-
ity we only discuss the logical schema as presented in Ap-
pendix A and Fig. 1. A few interesting parameters of the
data are presented in Table 2.

8.1 The workload

The workload contains multiple runs of eight queries and
five updates. The actual number of runs was determined
by various factors. We tried to maintain a balance between
expensive queries and simple ones, hold the update load at
about a third of the total load for most of the configurations,
and make the relative frequencies as realistic for a university
environment as possible. Tables 3 and 4 briefly describe
each query and update. For example, the workload contains
three runs of query Q6. The last two columns contain the
total cost in page I/Os attributed to all runs of query Q6



113

Table 3. Queries in the workload

No. Mix Given Find Rel OO
Q1 10 Faculty name Field, department 30 30
Q2 10 Faculty name Courses taught 30 30
Q3 10 Student name Year, department, advisor 50 50
Q4 10 TA name Support level, course 40 40
Q5 3 Faculty area Students advised 57 57
Q6 3 Student name Courses, teachers 39 42
Q7 2 Course name Students attending 84 80
Q8 1 Department name Courses taught 64 59

Table 4. Updates in the workload

No. Mix Update description Rel OO
U1 1 Faculty teaches a new course 5 7
U2 2 Faculty starts advising a student 10 14
U3 20 Student adds a course 160 120
U4 4 TA is assigned to a course 20 20
U5 6 Student enrolls in a department 24 24

when it is processed on two different configurations of the
database: a relational one (Sect. 8.2) and an object-oriented
one (Sect. 8.3). Note that each update inserts a single pair
of values. For example, when a student adds a course (U3),
the inserted pair would be(Student Id, Course Id).

To obtain I/O counts, we instantiated queries and up-
dates using random values for the input parameters and the
inserted pairs, used the actual plans obtained by our system
to perform the query or update, and recorded the size of the
result, as well as the sizes of all intermediate results used
in joins. From these data, we calculated I/O counts using a
simple model of the B+-tree and the heap storage structures,
based on the assumptions that the page size is 8 KB and
that 4 MB are used for buffers. The analytical approach was
chosen in favor of measuring actual response times, since
the underlying SHORE system was still under development
at the time of experimentation.

8.2 Relational design

The relational configuration follows a textbook translation
of the logical schema into relations. We created a relation
for each internal node of the schema and one for the many-
to-many relationshipattends . We assumed that the at-
tributename is a primary key for each entity in the schema,
thus playing the role of the identity surrogate for the rela-
tional configuration. We decomposed the inheritance asso-
ciation vertically, i.e., the TA relation includes TA-specific
data (support level ), as well asStudent.name and
Course.name for the assisted course. To simplify the dis-
cussion, we assumed that nested loops is the only available
join method. Secondary indices were added when neces-
sary to accelerate joins and selections, and we clustered the
records favorably in the heaps.

There was one case where gmaps could not simulate
the needed structure. Queries Q6 and Q7 need a secondary
index on theattends relation on both course name and
student name. These indices would return a physical pointer
in the attends relation. They cannot be expressed as a
gmap because gmap data can only be values of nodes in
the schema graph, and attends is an edge and not a node.

Note, however, that the need for these indices is an arti-
fact of the relational design restrictions: we would be better
off with two indices that map courses directly to students
and vice versa. This construct, called ajoin index, has been
shown to offer advantages over the conventional relational
approach (Valduriez 1987). Thus, we replaced the attends
relation with two gmaps that simulate the definition of a
join index over the attends relationship. The results showed
that the join index performed better than a combination of
a relation clustered on one of the two names and a pair of
secondary indices. The complete physical schema for the
relational configuration is presented in Appendix B.1.

The total database size for this configuration is 74 MB.
Running the full workload on that database costs 613 page
I/Os, 64% caused by queries and 36% by updates. The exact
contribution of all runs of each query and update in the total
cost is shown in Tables 3 and 4.

8.3 Object-oriented design

The physical schema for the object-oriented configuration
includes one extent file for each internal domain in the log-
ical schema. The relationshipattends is stored both as
part of student objects and as part of the course objects,
i.e., students contain pointers to all courses they attend, and
courses contain pointers to the students attending them. This
duplication allows efficient execution of queries Q6 and Q7.
The other relationships are stored as part of the domain clos-
est to the edge label in Fig. 1. For example, theadvises
relationship is represented by an attribute of theFaculty
class. We also encountered a case for which we had to al-
ter the planned design to conform with the gmap definition
language. Initially, we thought that the student extent should
contain both students and TAs. However, creating a gmap
that contains members of both domains, i.e., members of a
class and its subclass, requires a query that allows some form
of union, and our restricted notion of psj-query does not sup-
port such queries. Instead, we followed the same design as in
the relational configuration and decomposed TA vertically.
For the given workload, this alteration has no performance
effect. The gmap definitions that create the desired physical
schema are presented in Appendix 10. The total database
size for this configuration is 75 MB. Running the full work-
load on the database costs 583 page I/Os, 68% caused by
queries and 32% by updates. The last column of Tables 3
and 4 show the costs for all runs of each query and update.

8.4 Object-oriented design with complex access paths

The previous two configurations do not use any complex
access path such as path indices1 or field replication. It is
worthwhile to estimate the improvement that can be achieved
by equipping the object-oriented version of our database,
with such access paths. For the given workload, field repli-
cation can be applied in three cases, as shown in Table 5.
Each row of the table describes what is replicated, the addi-
tional space required in megabytes, the affected queries (no

1 We use the term path indices collectively for what Bertino and Kim
(1989) call path indices, nested indices, and multi-indices
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Table 5. Conventional complex path techniques

Replicate In Space No Saved
“Faculty.work in.name” Faculty 0.2 Q1 10
“Student.enrolled.name” Student 2 Q3 10
“TA.assists.name” TA 0.1 Q4 20

Total saved 40

Table 6. Applications of gmaps

Replicate In Space No Saved
“Student.advises−1.name” Student 2 Q3,U2 18
“Course.teaches−1.name” Course 0.4 Q6,U1 9
“Faculty.advises.name” Faculty 0.6 Q5 51
“Course.attends−1.name” Course 12 Q7 76
“Faculty.teaches.name” Faculty 0.4 Q8 50

Total saved 204

update is affected by these additions), and the savings that
can be attributed to the replication for all runs of the affected
query.

In Appendix B.3 we show the altered definitions of the
faculty, student, and TA gmaps, with the new complex paths
added. The rest of the physical schema is identical to the
earlier object-oriented schema. The data replication adds
2 MB of additional space, bringing the total database size
to 77 MB. The new database offers a 7% performance gain
over the previous one. It is interesting to note that the tech-
nique of field replication as originally described (Kato and
Masuda 1992; Shekita and Carey 1989) cannot be applied
to any other field in our database because it is restricted to
edges from classes to single-valued attributes. Similar re-
strictions also prohibit any useful application of path indices
in our database. The restrictions were imposed by previ-
ous authors for a reason: the implementation of these access
paths and the task of propagating updates would be far more
complex without them.

8.5 A configuration with gmaps

Next, we consider the results of fully equipping the database
with gmaps. Instead of designing a physical organization
from scratch, we show how we can make incremental
changes on the object-oriented physical schema to improve
its performance.

First, we replicate attributes over paths that traverse re-
lationships both in the inverse direction (from attribute to
class) and in the forward direction (from class to attribute).
Such a replication brings cost savings in queries Q3 and
Q7. Second, we consider replicating attributes over paths
that are not functional by associating multiple values with
each instance of the root of the path. Such replication is
very beneficial for our workload since it can eliminate the
most expensive step of the medium and large queries Q5,
Q7, and Q8. The altered gmap definitions are shown in Ap-
pendix B.4. The exact cost savings and overheads that are
caused by each additional access path are shown in Table 6.

These modifications offer a significant total gain of 204
I/Os, or 35% over the cost of the initial object-oriented ap-
proach. If we add to these savings those of the previous sec-
tion (with gmaps simulating field replication) the total gain
climbs to 42%. It is interesting to note the low update over-

Table 7. Summary costs

Space Query Update Total
(MB) cost cost cost

Relational 74 394 219 613
Object-oriented 75 398 185 583
OO + extensions 77 358 185 543
gmaps (1) 80.4 227 188 415
gmaps (2) 92.4 151 188 339

head of all these replications. The reason is that we replicated
attributes, likestudent.name , that are static, i.e., do not
get updated. As a result, the only updates that are affected are
those on the intermediate links of the path. Theattends
relationship, for example, is the most volatile relationship in
the schema, so we expect that the slightest update overhead
would overwhelm any savings gained. However, since the
attends relationship is bi-directional (stored as an attribute
of both the student and the course), both extents need to be
updated anyway. Reading and writing one more attribute,
student.name , does not add any overhead.

The space overhead is also low in all but one case: repli-
cating the student names in each course more than doubles
the size of the course extent. Whether or not the space-time
trade-off is worthwhile depends on the application. The to-
tal increase in space usage is 15.4 MB, bringing the total
database size to 92.4 MB. Table 7 compares the query cost,
update cost, and disk usage of all four approaches. For the
gmap configuration, we show the results both with and with-
out replication of student names, in both cases including the
enhancements of the configuration with complex paths.

8.6 A change in the workload

Finally, we consider the problem of adapting the database
to a changing workload. Assume that our workload is aug-
mented by a single run of one additional query Q9 that asks
for the names of all TAs supported by a department. More
precisely, Q9 asks for all TAs who assist a course taught
by a faculty member that works in a given department. The
simplest way to handle the new query in the initial object-
oriented configuration would be to recluster the TA extent so
that it is ordered by the supporting department of the TAs,
and add an index from course identifications to TAs. The
cost of the query Q9, however, remains high – 164 I/Os –
and the total contribution of the query to the load, taking
into account the additional update overheads, climbs to 172
I/Os. We use this configuration as the baseline for the new
workload.

The problem with the new query is that it requires un-
clustered access to the large student file in order to obtain
the student name. Reclustering the file does not help since
query Q5 depends on that specific clustering for its perfor-
mance. Keeping two copies of the student file, clustered for
Q5 and Q9, respectively, is a unwise because of the high
update rates of theattends relationship. Such a solution
would also result in a significant increase in the database
size without much help in processing cost.

gmaps offer additional options. We can selectively repli-
cate thestudent.name attribute requested by the new
query from the student extent to the TA extent. This lowers
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the query cost by 95 I/Os. The net gain after accounting for
the additional cost of updates is 79 I/Os. Table 8 compares
the three new configurations. Savings and losses are given
relative to the baseline configuration. Notice that while all
options are available to the gmap-equipped database, most
conventional databases would only have the first option, and
a few may support the second.

Under the new workload, the gmap-equipped configura-
tion has a load of 422 I/Os compared to 755 I/Os in the
object-oriented system, for total savings of 44%.

9 Related work

Most existing database systems do not provide true physi-
cal data independence, since every construct of the logical
schema corresponds directly to a primary physical structure.
For example, every relation in most relational systems, every
class extent in extent-based OO systems [e.g., Orion (Kim et
al. 1990), and Zoo (Ioannidis et al. 1993)] and every collec-
tion in collection-based OO systems [e.g., GemStone (Maier
and Stein 1986), Extra/Excess (Carey et al. 1988), and Ob-
jectStore (Orenstein et al. 1992)] is stored in a separate file.
The main flexibility at the physical level comes from sec-
ondary access paths to these files.

Several extensions of both the primary physical struc-
ture and the secondary access paths have been recently pro-
posed in the literature and allow storing together data from
more than one logical construct. In Sects. 2 and 8, we dis-
cussed path indices (Bertino and Kim 1989; Kim et al. 1989;
Maier and Stein 1986), join indices (Valduriez 1987), and
field replication (Kato and Masuda 1992; Shekita and Carey
1989), noting their restrictions and comparing their perfor-
mance to our scheme. Another approach to decomposing the
database is hierarchical join indices (Valduriez et al. 1986),
a generalization of join indices that allows one to build an
index over identity surrogates that populate trees of the log-
ical schema graph. Access support relations (ASR) offer a
different generalization of join indices (Kemper and Mo-
erkotte 1990a), which allows the definition of indices over
the instances of arbitrary chains of logical schema nodes.
This scheme offers a higher degree of flexibility and al-
lows the definition of indices that store both complete and
partial instances of each chain. Except for the last feature,
the contents of both hierarchical join indices and ASRs can
be represented as psj-queries, and can thus be defined as a
gmap. However, since gmap queries do not support unions,
they cannot represent outer joins, and therefore cannot store
incomplete instances of chains.

With respect to the translation algorithm, our work most
closely resembles research at the University of Waterloo on
materialized views (Blakeley et al. 1989; Yang and Larson
1987). Our algorithm supports a more restricted query lan-
guage, but uses information about inclusion and functional
dependencies as well as “topological” information implicit
in a graph-based logical schema. This information allows
us to identify solutions that would be missed by the more
general algorithm. Section 5 contains an example of a solu-
tion that can only be found when inclusion dependencies are

taken into account.2 Similarly, our handling of functional
dependencies is more general than that of the algorithm of
Yang and Larson (1987), which simply uses the primary key
information for each relation. Unless all non-trivial depen-
dencies are generated by superkeys (i.e., unless all relations
are in at least 4th Normal Form), our scheme will find more
solutions.

With respect to the integration with the rest of the query
optimizer, most earlier efforts use a two-stage approach,
where the queries are first translated into queries over phys-
ical structures, and the resulting queries are then optimized
one-by-one by a conventional optimizer. In addition to the
work on materialized views (Blakeley et al. 1989; Yang
and Larson 1987), such efforts include research whose goal
was not physical data independence but simply processing
efficiency. Examples include research on reusing common
subexpressions within a query (Hall 1976) or between mul-
tiple queries (Sellis 1986), reusing results of previous queries
(Finkelstein 1982), and using integrity constraints for seman-
tic query optimization (Chakravarthy 1990). Kemper and
Moerkotte (1990b) opt for a unified approach of translation
and optimization for the ASRs by extending a rule-based op-
timizer to include appropriate rewriting rules. Our approach
of enhancing a conventional optimizer with the necessary
translation steps takes advantage of full cost information
available to the optimizer to perform early pruning of in-
ferior solutions, while keeping the overall optimization cost
low.

10 Conclusion

We have presented a new approach to physical schema de-
sign that uses a declarative language to describe the contents
of storage structures. Carefully restricting the language al-
lows efficient algorithms to translate queries over the logical
schema into access plans using the physical data structures.
We have shown how to integrate the query translation algo-
rithm into a conventional query optimizer. A simple mod-
ification of the query translation algorithm supports propa-
gation of updates to the database. A prototype system that
incorporates the major aspects of this approach is currently
operational. We have used it to demonstrate in a realistic
environment how our approach can achieve significant per-
formance gains over more conventional schemes.

Further development is necessary for our technique to
reach its full potential in a practical setting:

– This paper assumes that the user query has already been
decomposed in psj-query components that obey the same
restrictions as the gmap definition language (Sect. 2.2).
It should be possible to extend our technique to translate
user queries containing constructs not allowed in gmap
queries, such as arbitrary joins of gmaps, duplicate oc-
currences of gmaps in thewhere clause and duplicate
occurrences of attributes in the query target.

2 In the example of Sect. 5.4, the translation of the update query for
the gmapCFS has one solution if there is no inclusion dependency from
teaches to attends , and two solutions otherwise. An algorithm that
does not check for inclusion dependencies cannot discover the second
solution
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Table 8. Alternative database reconfigurations

Description of technique Space overhead Activities Saved
(MB) affected (lost)

Recluster student extent 0 Q5,Q9 (5)
Keep two copies of student extent 40 Q9,U3 (35)
Replicate “Student.name” in TA extent 0.1 Q9,U4 79

– As we discussed in Sect. 5, we do not guarantee that
the data described in the logical schema can be stored
in the physical schema. It should be possible to devise
sufficient conditions to ensure that a proposed physical
schema “covers” a logical schema, in the sense that it has
sufficient “information capacity” to store any database
instance consistent with the logical schema. When these
conditions are not met, the system should be able to warn
about updates that result in information loss.

– The translation algorithm should be extended to take
into account additional integrity constraints and permit
the translation of queries into unions of other queries. It
should also be able to incorporate storage structures that
offer a hierarchical interface.

– Finally, the increase of available choices in the physical
schema design puts the burden on the database admin-
istrator to make the correct choices. We need to design
tools that guide the administrator in choosing the appro-
priate combination of storage structures.
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Appendices

A. Logical schema in ODL

interface Dept {
public:

attribute string name;
};
interface Faculty {

attribute string name;
attribute string area
attribute ref<Dept> works_in
attribute set<Student> advises;
attribute set<Course> teaches;

;
interface Student {

attribute string name;
attribute short year;
attribute ref<Dept> enrolled;
attribute set<Course> attends;

};
interface TA : public Student {

attribute float support_level;
attribute ref<Course> assists;

};
interface Course {

attribute string name;
attribute short level;

};
}

B Physical schema

B.1. Relational physical schema

// Relations
def_gmap DeptRelation as heap by

given Dept select Dept.name

def_gmap FacultyRelation as heap by
given Faculty select Faculty.name,
Faculty.area, Dept.name
where Faculty works_in Dept

def_gmap CourseRelation as heap by
given Course select Course.name,
Course.level, Faculty.name
where Faculty teaches Course

def_gmap StudentRelation as heap by
given Student
select Student.name, Student.year,
Dept.name, Faculty.name
where Student enrolled Dept and

Faculty advises Student

def_gmap TARelation as heap by
given TA select Student.name,
TA.support_level, Course.name
where TA isa Student and
TA assists Course

// Name Indices
def_gmap Dept_name_index as
btree by given Dept.name select Dept
def_gmap Faculty_name_index as
btree by given Faculty.name select

Faculty
def_gmap Course_name_index as
btree by given Course.name select

Course
def_gmap Student_name_index as
btree by given Student.name
select Student
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// Other Indices
def_gmap Faculty_area_index as btree

by given Faculty.area select Faculty

def_gmap Course_teaches_index as btree
by given Faculty.name select Course
where Faculty teaches Course

def_gmap Student_advisor_index as btree
by given Faculty.name select Student
where Faculty advises Student

def_gmap TA_assists_index as btree by
give Course.name select TA
where TA assists Course

def_gmap Course2Student_join_index
as btree by

given Course select Student
where Student attends Course

def_gmap Student2Course_join_index
as btree by

given Student select Course
where Student attends Course

B.2. Object-oriented physical schema

// Class Extents
def_gmap DeptExtent as heap by

given Dept select Dept.name

def_gmap FacultyExtent as heap by
given Faculty select Faculty.name,
Faculty.area, Dept, Student. Course
where Faculty works_in Dept
and Faculty advises Student and
Faculty teaches Course

def_gmap CourseExtent as heap by
given Course select Course.name,
Course.level, Student
where Course attended Student

def_gmap StudentExtent as heap by
given Student select Student.name,
Student.year,
Dept, Course
where Student enrolled Dept
and Student attends Course

def_gmap TAExtent as heap by
given TA select Student,
TA.support_level, Course
where TA isa Student and
TA assists Course

// Name Indices
def_gmap Dept_name_index as

btree by given Dept.name select Dept
def_gmap Faculty_name_index as
btree by given Faculty.name select

Faculty
def_gmap Course_name_index as
btree by given Course.name select

Course
def_gmap Student_name_index as
btree by given Student.name select

Student

// Other Indices
def_gmap Faculty_area_index as btree

by given Faculty.area select Faculty

def_gmap Faculty_advises_index as btree
by given Student select Faculty
where Faculty advises Student

def_gmap Faculty_teaches_index as btree
by given Course select Faculty
where Faculty teaches Course

def_gmap Faculty_works_index as btree
by given Dept select Faculty
where Faculty works_in Dept

B.3. Object-oriented schema with complex paths

def_gmap FacultyExtent as heap by
given Faculty select Faculty.name,
Faculty.area, Dept, Dept.name,
Student, Course
where Faculty works_in Dept and
Faculty advises Student and
Faculty teaches Course

def_gmap StudentExtent as heap by
given Student select Student.name,
Student.year,
Dept, Dept.name, Course
where Student enrolled Dept
and Student attends Course

def_gmap TAExtent as heap by
given TA select Student,
TA.support_level, Course,

Course.name
where TA isa Student and TA assists

Course

B.4. gmap Schema

def_gmap FacultyExtent as heap by
given Faculty select Faculty.name,
Faculty.area, Dept, Dept.name,
Student, Student.name,
Course, Course.name
where Faculty works_in Dept and
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Faculty advises Student and
Faculty teaches Course

def_gmap CourseExtent as heap by
given Course select Course.name,
Course.level,
Student, Student.name, Faculty.name
where Course attended Student
and Faculty teaches Course

def_gmap StudentExtent as heap by
given Student select Student.name,
Student.year,
Dept, Course, Faculty.name
where Student enrolled Dept and
Student attends Course and
Faculty advises Student
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