
User-Oriented Visual Layout
at Multiple Granullarffies*

Yannis Ioannidis t Miron Livny Jian Bad Eben M. Haber ~
Department of Computer Sciences, University of Wisconsin, Madison, WI 53706

{yannis,miron,bao,haber} @ cs.wisc.edu

Abstract
Among existing tools for laying out large collections of visual ob-
jects, some perform automatic layouts, possibly following some
rules prespecified by the user, e.g., graph layout tools, while others
let users specify layouts manually, e.g., CAD design tools. Most of
them can only deal with specific types of visualizations, e.g., graphs,
and some of them allow users to view visual objects at various lev-
els of detail, e.g., tree-structure visualization tools. In this paper,
we develop techniques that strike a balance between user specifica-
tion and automatic generation of layouts, work at multiple granu-
larities, and are generally applicable. In particular, we introduce a
general framework and layout algorithm that (a) deals with arbitrary
types of visual objects, (b) allows objects to be viewed in any one
of several different visual representations (at different levels of de-
tail), and (c) uses a small number of user-specified layouts to guide
heuristic decisions for automatically deriving many other layouts
in a manner that attempts to be consistent with the user's prefer-
ences. The algorithm has been implemented within the OPOSSUM
database schema manager and has been rather effective in capturing
the intuition of scientists from several disciplines who have used it
to design their database and experiment schemas.

1 Introduction

Visualization of large collections of objects is a very impor-
tant area. Of special interest to us are environments where
the layouts of these visualizations are specified by the users.
For example, large graphs are laid out to display a variety of
structures, including database schemas, communications net-
works, flow charts, and block diagrams of large systems. For
another example, large collections o f diagrams can he laid
out to indicate trends in several properties of a system or phe-
nomenon, like weather characteristics changing over time at
several stations, shock wave characteristics after an explo-
sion for oil exploration, and stock market prices for stocks of
several types.

Quite often, there are multiple visual representations that

* Work supported in part by the National Science Foundation under
Grant tRI-9224741.

t Additionally supported in part by the National Science Foundation
under Grant IRI-9157368 (PY1 Award) and by grants from DEC, IBM, HR
AT&T, Oracle, and Informix.

Present address: Silicon Graphics, MS 8U-981,201t N. Shoreline,
Mountain View, CA 94043-1321, eben@sgi.com.

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.
AVI '96, Gubbio Italy

© 1996 ACM 0-89791-834-7/96/05_$3.50

can be used for each visualized obiect, each representation
having a different size. This is typically due to a desire to
focus on one part o f the visual information while still see-
ing it in the context of the whole. For example, in textual
outlines and tree-structure visualizations, subsidiary infbr-
mation (such as outline subpoints or subtrees) may be hid-
den when not of interest (see Figure 1); in general graphs, re-
gions with several nodes and edges may be replaced by a sin-
gle node; in set representations, the precise contents of the set
may be hidden.

PHILOSOPHY PHILOSOPHY

TRAGEDY Adstotele

Aeschylus Plato

Sophocles Socrates

Euripides TRAGEDY

COMEDY COMEDY

MATHEMATICS Aristophanes

ASTRONOMY MATHEMATICS

ASTRONOMY

Figure I: Example of text outlines at various levels of detail

Multiple visual representations, however, may also be de-
sirable independent of abstraction, from a mere need for mul-
tiple views. For example, one may color an object red or may
enlarge the object and put a label wi{h a number next to it
capturing the precise shade o f ' red' being used (for more ac-
curate knowledge of color as well as for display on black--
and-white screens); one may present textual record structures
with the details of a set of trees or show an icon for each tree
whose characteristics capture the trees' properties (see Figure
2); one may show the details of a record as contained within
the record or as separate nodes connected to the record node
through edges.

Dealing with multiple visual representations of different
sizes is a nontrivial problem due to the following two require-
ments on visual object layouts:

R1 Visual objects should not overlap: all objects under the
screen view are individually viewable.

R2 Visual objects should not unnecessarily waste space be-
tween them: modulo any explicit object placement by the
user, distances between objects should be below a certain
threshold to allow one to simultaneously view as many
objects as possible at any zooming level.

184

i

i type: conl fe, i i

! h;ig/nt t8

' 4] [w i d t h : ,

. r

j!dl [4 5 6 .]

type: .i~ w!!!.gW_....i

, [

width i [.6 i ' ,

123
2 0

.... 456

1 0

0 ~ ~

Figure 2: Example of textual and iconic representations of

two trees

When moving from a small to a large visual representation of
an object, requirement Rl precludes the approach of show-
ing the larger representation in a new window that is subse-
quently removed. This would be appropriate to satisfy a mo-
mentary and local desire to change repre§entation, but our
goa] is to deal with changes that last for an arbitrarily long
time and shift the focus while continuing to maintain the

global context.

In this paper, we introduce techniques that deal with lay-
outs of large collections of objects with multiple visual repre-
sentations in the context of Requirements R1 and R2. These
have emerged out of our efforts to build a generic and intu-
itive database schema manager (OPOSSUM [6]) that can be
used by scientists to lay out designs of their database and ex-
periment schemas. We have been collaborating with scien-
tists fl'om various disciplines (Soil Sciences, Biochemistry,
and Physics) and the need to have an effective method for
user-oriented schema layout with a variety of visual represen-

tations has been universal.

We first establish a framework within which we express
assumptions that must be fulfilled by the visual objects con-
cerned and additional requirements on the style of user inter-
action desired, and then study the layout problem. We intro-
duce a heuristic algorithm that maintains a small number of
layouts that the user has (directly or indirectly) specified for
specific combinations of representations of the visual objects.
The algorithm takes these into account to automatically de-
rive layouts for all the remaining such combinations in a way
that attempts to capture the user's layout preferences. In its
general form, the algorithm can deal with different types of
objects associated with various visual representations. It has
been implemented in OPOSSUM and has been quite success-
thl in generating desirable and intuitive layouts.

2 Problem Formulation

2.1 Definitions and Assumptions

Without toss of generality, we assume that all objects to be
visualized are of the same type, e.g., all are graph nodes. We
discuss how this restriction can be removed in Section 4. Let
L9 denote the (potentially countably infinite) set of objects
to be visualized. Furthermore, without loss of generality, let
O v = {o/]ol E O a n d l < i < m} betheset ofobjects
currently visualized, for some integer rn. There is a (usually
small) set of visual representation kinds that is associated
with the set of objects to be visualized; if there are n such
kinds, each one is identified by an integer 1 < j < n. Every
object in O can be visualized using any of the representation
kinds; the visual object resulting from visualizing object oi
using representation kind j is denoted by vlj. For example,
Figure 2 shows two visual representations (one textual and
one iconic) for physical trees.

A visual configuration (or simply configuration) consists
of the visual objects Vij that are used to represent the cor-
responding objects oi. Clearly, given a fixed set of objects
0 v, there are n m possible configurations. The set of these
configurations is denoted by C. As a notational convention,
we represent each configuration as a "word" of the form
ala2 . . .am, where for each object oi E 0 v, 1 < i < m, the
"letter" ai is equal to j , where •ij is the visual representation
of oi in the configuration. A layout of a configuration con-
sists of a location on the plane for each object in 0 v. The user
is free to move among configurations; we assume that this is
achieved through user actions that consist of changing the vi-
sual representation of a single object each time. The config-
uration that is on the screen at any point is the current config-
uration. Returning to the example of visualizing collections
of trees, Figure 2 deals with two tree objects and shows two
visual configurations of the collection. These would be con-
figurations 11 and 22, if 1 was used for the iconic (smaller)
representation of a tree and 2 was used for the textual repre-
sentation. The remaining two configurations are indicated in

Figure 3.
The following assumption holds in many situations and is

important for obtaining effective and efficient layout algo-

rithms:

A For any object oi E (_9, its corresponding visual
objects vii, 1 <_ j < n, can be put in a lattice ~./
based on their sizes so that, if vii ~i Vik, then vii
can be drawn completely enclosed within vik.

Observe in Figure 2 or 3 how the textual representation is
larger than the iconic representation for both trees.

Without loss of generality, and for simplicity of presenta-
tion, we further assume that ~i is a total order and gives rise
to the same lattice on representation kinds for all i. We use
--.4 to denote the lattice of representation kinds and (overload-
~ng the symbol) the lattice on visual ob}ects corresponding to
an object, make the notational assumption that Vlj M Vik if

j_<k.

185

id: i 123

_LvP'%__i conifer

i width: I 4

/I"

20,
, 456

10[....... "

o L ~_

20]
I

10

123

I ,
/

i

i i id: i 4 5 6 '

'i pe: i willow i
i . i
i_helg)!t: 1 12

width: ~ 6

Figure 3: Two configurations with different visual represen-
tations for two trees

An important implication of Assumption A is that the
visual configurations in C form a lattice (denoted by _~c_)
based on the lattices on visual objects. In particular, for two
configurations c, c ~ C C, we say that c ~ c c~ if for all i,
vii C c and vik 6 c' imply that Yij ~ Yik.

For example, consider an abstract situation where there are
two objects to be visualized and three representation kinds
(denoted by 1,2, and 3, respectively). The lattice formed by
all the possible configurations is shown in Figure 4, where the
nodes capture confgurations and the arrows capture _~E.

13

12 23

11 22 33

31

~i 7- ~

21 32

Figure 4: Size-based inclusion lattice of visual configurations

Let valid layouts of configurations be those that satisfy
Requirement RI. Let perfect layouts of configurations be
those that satisfy both Requirements R1 and R2. Because
of Assumption A and the fact that the configuration lattice is
based on visual representation sizes, it is clear that i fe ---E e~,
then any perfect layout of e needs no more space than any
perfect layout of d . Alternatively, if c ~E c~, then any valid
layout of c' is a valid layout of c as well, These observations
form the intuition for the layout algorithms given below.

The algorithms only ensure the valM-ity of layouts resulting
from user actions, while striving for perfect-ion of layouts
resulting from internal actions.

2.2 Layout Requirements

The emphasis of this work is on design environments. That
is, users interact with the system by pertbrming the following
actions:

, they create objects interactively by placing on the screen
some visual representation of them;

* they delete objects interactively by removing their visual
representations from the screen;

* they move visual representations of objects around to
alter the current layout; and

* they view different visual configurations by changing the
visual representations of objects on the screen.

As mentioned earlier, our main motivation fk)r this work
has been the needs of experimental scientists, who essentially
operate within such an environment when designing experi-
mental studies. In our collaborations with several such scien-
tists, the following requirements have emerged with respect
to the layout capabilities of a design tool (in addition to the
more generic Requirements R1 and R2).

R3 A new object may be created using any visual represen-
tation for the generated visual object, while those alre~ty
existing may be in any configuration.

R4 Layouts specified by the user are important and the sys-
tem should be able to regenerate them.

After discussing the problems of a straightforward attempt to
satisfy these requirements, the next section presents a heuris-
tic algorithm that is effective in doing the same while avoid-
ing the problems. This algorithm is the main contribution of
our work.

3 Algorithms
Our algorithm descriptions focus on what happens during
each of the action types mentioned in Section 2.2. In addi-
tion, they elaborate on what is stored in the algorithms' per-
sistent storage structures.

3.1 Naive Algorithm

The following is a description of a naive algorithm that would
accurately satisfy Requirements R I-R4.

1. Storage: The layout of any configuration that the system
has passed through is explicitly stored.

2. Object creation: An object may be created only in lo-
cations that make the resulting layout satisfy Require-
ment R1 (valid layouts); otherwise the request is rejected.
Since previously maintained configuration layouts arc for
a different overall set of objects, they are all removed

186

from the algorithm's storage structures and the layout of
the current configuration becomes the only one recorded
there.

. Object deletion: An object may be deleted at any time.
As in object creation, previously maintained configura-
tion are removed.

4. Object move: An object may be moved only to locations
that make the resulting layout satisfy Requirement R1
(valid layouts); otherwise the request is rejected. The
layout stored for the current configuration is updated to
reflect the new location of the moved object.

. Configuration change: If the new configuration has been
seen in the past, then its layout is already stored and is
simply used to draw the visual objects of the configu-
ration on the screen. Otherwise, the user places on the
plane all existing visual objects and the resulting layout
is stored for future use.

Note that the above algorithm is extremely easy to implement
as most of the burden lies with the user; the algorithm simply
follows the user's instructions and does not incorporate any
layout techniques itself.

On the other hand, this algorithm is obviously unrealistic,
particularly with respect to points 1, 2, 3, and 5. Point 1
implies that the space requirements of the algorithm may
potentially be exponential in the number" of visual Objects
(O(~ "~) if the user passes through all configurations, for m
objects and n visual representation kinds). Points 2 and 3
imply that the mere creation or deletion of a single object
results in throwing away tremendous information captured
in the stored layouts and waisting all the time spent by the
user to generate these layouts. Finally, point 5 implies that
the effort required by the user to move to a previously unseen
configuration is linear in the number of visualized objects,
which for large designs would be unacceptable.

The only reason for discussing the above algorithm is that
it represents a form of ideal with respect to Requirements
R1-R4. Any algorithm that accurately satisfies these require-
ments will need the user to be involved at a similar level as in
the algorithm above and will be of similar space and/or time
complexity. For example, point 1 cannot be avoided if users
are not to be forced to lay out again configurations through
which they have already passed and are revisiting. Points 2
and 5 could be made more realistic by keeping past layouts
of partial configurations (with fewer objects than currently),
but that would imply even larger space overhead (O(n '~+1)
in the worst case, assuming that n is constant). Finally, point
3 could be modified so that past layouts of larger sets of ob-
jects are used for the layout of smaller sets by simply ignor-
ing the locations of deleted objects. In addition to potentially
increased space overhead, however, this creates the problem
of possibly having to choose among multiple inconsistent
layouts for the same (smaller) configuration. This problem
would arise if two stored layouts are for configurations that

differ in the visual representation of a single object, which is
the one deleted, and have some of the remaining objects in
different locations.

3.2 Heuristic Algorithm

In this section, we present an algorithm that interprets Re-
quirement R4 not as a strict rule but only as a desired goal,
and is much more efficient and realistic in terms of space and
time complexities and required user involvement. Although
it does not satisfy R4 in an absolute sense, it attempts to ap-
proach it as much as possible by following heuristics that
are based on a particular notion of users' preferences as ex-
pressed in the layouts specified by the user.

Understanding users' preferences and intended meaning
underlying any given spatial placement of visual objects is a
difficult problem, as these can be based on a wide variety of
spatial characteristics [7]. In our approach, we consider rel-
ative or absolute angles of vectors connecting visual objects
between them or to a fixed origin as the key features that char-
acterize the relative placement of objects. Thus, our heuris-
tics are based on some form of an approximate angular in-
variance.

The following is a description of the algorithm using the
same structure as for the naive algorithm.

1. Storage: The layout of a very small number of care-
fully chosen configurations is explicitly stored. These are
called anchored configurations. At any point, the layout
of the current configuration is stored as well.

2. Object creation: An object may be created only in loca-
tions that make the resulting layout satisfy Requirement
R1 (valid layouts); otherwise the request is rejected. A
heuristic procedure is invoked (Procedure Heur-Creat e
below) to insert the new object in the layout of each an-
chored configuration that is different from the current
configuration and update the corresponding stored infor-
mation. Procedure H e u r - C r e a t e guarantees Require-
ments R 1 and R2 (perfect layouts) with respect to the new
object and attempts to satisfy Requirement R4 by taking
into account the layout stored for the anchored configura-
tion before the new object is inserted and also the location
where the user placed the new object within the layout of
the current configuration.

3. Object deletion: An object may be deleted at any time. In
addition to the current configuration, the object is deleted
from each anchored configuration as well. The layouts of
all stored configurations remain the same with respect to
all other objects, thus only guaranteeing valid but not nec-
essary perfect layouts (Requirement R1 but possibly not
R2) and also satisfying Requirement R4 by not touching
any object placed by the user.

4. Object move: An object may be moved only to locations
that make the resulting layout satisfy Requirement R1

187

(valid layouts); otherwise the request is rejected. The lay-
out in the current configuration is updated to reflect the
new location of the moved object. If the current config-
uration happens to be an anchored configuration as well,
then the update is also propagated to the corresponding
layout stored.

. Configuration change: If the new configuration is an-
chored, then its layout is already stored and is simply
used to draw the visual objects of the configuration on
the screen. Otherwise, a heuristic procedure is invoked
(Procedure H e u r - R e c o n f i g below) to obtain a layout
for the new configuration. Procedure H e a r - Re c on f 2 g
guarantees Requirements R1 and R2 (perfect layouts)
and attempts to satisfy Requirement R4 by taking into
account the configuration lattice and the layout of an-
chored configurations, which either directly or indirectly
(through Procedure H e u r - C r e a t e) reflect user prefer-
ences. Since the old and new configurations differ only
in the visual representation of a single object, they are
guaranteed to be related via ~E. Let c and c' be the
old and new configurations, respectively, and assume that
c ~E c'. Procedure H e u r - R e c o n f i g identifies the
closest anchored configuration ca for which c 3_E ca and
e' ~E ca and moves visual objects taking into account
their locations in the stored layout of ca until a perfect lay-
out is derived. (The algorithm proceeds similarly when
c' ~E c, in which case ca satisfies ca _~E c and ca ~E c~
and the concern is wasted space.)

Note that point 3 may have the problem mentioned at the end
of Section 3.1 of possibly having to choose among multiple
inconsistent layouts for the same anchored configuration af-
ter an object deletion. However, if at any point any two con-
figurations differ in the visual representation of at least two
objects, then the problem does not arise. We expect that the
premise of the above statement is virtually always true, so
point 3 does not have to deal with this issue. Also note that
point 4 remains essentially the same as in the naive algorithm,
since it did not introduce any major costs. One may argue
that the system should not reject object placements that vio-
late Requirement R1, but instead should employ a plowing-

like algorithm [12] to push visual objects so that all overlap
is removed. The advantage of this approach is that users do
not have to open up space themselves in the area where they
want to move the object, while its disadvantage is that it dis-
torts the user-specified placement of all other objects. Both
approaches are fine alternatives, however, and one could in-
corporate into the algorithm either one based on the users'
desires. Our choice in the above description is due to its sim-
plicity.

Also note that in order for ca to always exist for point
5, the configurations represented by the words 111 . . . 1 and
n n n . . , n, which by definition are the lowest and highest ele-
ments in the lattice (recall that n is the number of representa-
tion kinds), must be anchored. Beyond those, any other con-

figuration may be specified as anchored as well, either dy-
namically by the user (so that the most important configura-
tions have exactly the desired layout) or statically by the sys-
tem irnplementors (so that there are enough anchored con fig-
urations spread around the lattice for system stability). In the
latter case, a reasonable approach (which we have adopted as
welt) is to make anchored the configurations where all objects
are in the same visual representation, i.e., those represented
by the w o r d s i i i . . . i , 1 < i < n.

We now present Procedure Heur-Creat e in a littlemore
detail. In what follows, c is the current configuration and v is
the visual representation of the newly created object. Recall
that perfect layouts satisfy both Requirements R1 and R2,
which call for no overlap and no wasted space between any
two visual objects.

procedure 1 { e a r - C r e a t e (e , v)
begin
/_ = vector from origin to location of v in c
for each anchored configuration ca s.t. Ca ¢ c do

move v along the vector /
until a perfect layout is obtained

update location of v in ca
od
end

Procedure H e u r - C r e a t e is illustrated in Figure 5. The
visual objects A, B, C, and D in the current configuration,
c, are shown in Figure 5a with thin dashed borders and the
newly inserted object E is shown with a thick dashed border.
Object E is placed in a location that results in a valid layout
for e. Consider now an anchored configuration ca whose lay-
out before the creation of the new object is shown in Figure
5b with the visual objects having thin solid borders. The vi-
sual representation of E in Ca is shown with a dashed border
placed in the location specified by the user in c. The result-
ing layout is not valid since, in that location, E overlaps with
other visual objects in ca. Procedure Hear-Create pushes
E along the vector/_ (between the origin and the location of E)
until all overlap disappears. In its final location, E is shown
with thick solid border.

Note how Procedure H e a r - C r e a t e tries to satisfy Re-
quirement R4. The new object E is initially placed in the
same location where the user placed it, and is then moved
along the line between that location and the origin. If the user
has been consistent with respect to laying out anchored con-
figurations and the current one, then the resulting location of
the new object is likely to have spatial similarities to that cho-
sen by the user in the current configuration. In the above,
consistency may be precisely defined in various ways, e.g.,
it may be defined as, in all configurations, placing objects at
the same angle (or within a bounded angle difference) in ra-
dial coordinates with respect to the origin. We avoid giving a
specific definition as Procedure H e a r - C r e a t e is indepen-

188

A ~=~I E

B

Or~g~y O

C
i

(a)

B

A

1 IE

U
1 .

I

D
() n g l ~ f

j E

(b)

Figure 5: Example of Procedure Heur-Create: (a) current
configuration; (b) anchored configuration

dent of that, but want to emphasize that the essence of any
such definition is that there should be no dramatic swappings
of relative positions of elements. Even more important for
Requirement R4 than the direction of the object move is
the fact that procedure H e u r - C r e a t e does not alter the
location of any existing element in the layout of the anchored
configuration. I f the user has spent a long time to place things
'just right ' , a heuristic algorithm will not destroy that. Even if
the location resulting for E is not optimal, the user can change
that location when visiting that anchored configuration in the
future.

We also present Procedure H e u r - R e c o n f i g in a little
more detail below. In what follows, c is the old configuration,
c' is the new configuration, and v is the new visual represen-
tation of the object whose representation change causes the
configuration change.

procedure H e u r - R e c o n f i g (c , e', v)

begin
/ = vector f rom origin to location of v in c (and c')
i r e _ ~ c c '

then ca = anchored configuration
closest to e ~ s.t. c ~ ~ c Ca

else ca = anchored configuration
closest to c ~ s.t. ca ~E c/

l& = vector f rom origin to location of v in ca

l~ = l a - 1

for each v' violating Requirements R I-R2
with respect to v in c' do

v = vu{ }
od
wh i l e V ¢ ~ do

choose v' an element in V
I / = vector from origin to location of v / in c
l' a = vector from origin to location of v' in ca

move .v ~ along the vector lmove

until a perfect layout is obtained
with respect to v t and v

update new location of 'v ' in c ~
for each v" violating Requirements R I-R2

with respect to v' in c / do
V = V u { v " }

od
v = v - b " }

od
end

Procedure Heur-Reconfig is illustrated in Figure 6.
The visual objects A and B in the current configuration, c, are
shown with thin dashed borders. Object A has just changed
visual representation in c, which has resulted in an invalid
layout due to overlap with B. Consider the closest anchored
configuration ca that satisfies the condition expressed in the
pseudocode above. Its layout is shown in the figure with the
visual objects having thin solid borders. Vectors/ , la, 16, l_~,
and l~ as defined in Procedure H e u r - R e c o n f i g are shown
in the figure as thin arrows, while vector l m o ~ is shown as a
thick arrow. Procedure H e u r - R e c o n f i g pushes B along
the vector Imo~e until its overlap with A disappears. In its
final location, B is shown with thick dashed border.

A
.

A i
i I /8 - ! "
I I i
I . - ¸ I ¸ ~ B
i 4 ! la
i i " ~ ! B ,'~

. ~ <.~

Origin _ - ,"~"" "" !fi ~ 'move

Figure 6: Example of Procedure H e u r - R e c o n f i g

What happens essentially is that the entire layout of config-
uration ca is "virtually" moved so that the location of object
A is the same in both c and ca. This "move" is equivalent to
subtracting lz from the locations of all objects in ca, so that
one essentially deals with locations in ca that are "relative" to
the location of object A. Thus, object A is considered to be in
c in its correct location in ea and does not move. Any objects

189

causing overlaps in c are then recursively pushed towards
their "relative" locations in c~ so that all overlap may disap-
pear. This will certainly happen eventually, because even if
in the worst case all objects need to reach their "relative" lo-
cations in c~,, at that point there will be no overlap since c~
is an anchored configuration (directly or indirectly) specified
by the user and is therefore guaranteed to satisfy Requirement
Ri.

Again note how Procedure t - I eu r -Recon~ ±g tries to sat-
isfy Requirement R4. Relative to object A, the longest that
object B can be pushed is up to its "relative" location in the
stored layout of the anchored configuration c~, which is a lay-
out of the two objects that captures the user's desires. Thus,
any partial movement in that direction is likely to result in
spatially similar layouts.

4 Generalizations

In this section, we briefly discuss how our approach can be
generalized in some useful directions.

4,1 Multiple Kinds of Objects

In Section 2.1, we made the assumption that all objects to be
visualized are of the same type, and that was the basis for
the description of all our algorithms above. Removing this
restriction is straightforward. Consider designs that involve
k object types, k >_ 1, and must satisfy Requirements R1-R2
with respect to objects of all types. Let rni be the number of
objects of type i currently visualized and r~i the number of
visual representation kinds for objects of type i. Then, there

k m i k are [Ii=1 ni configurations in C and ~i=~ rn.i "letters" in
the "word" representing a configuration (total number of
objects). The rest of the preceding discussion, however, as
well as the developed algorithms remain valid for this case
as well.

For example, consider an abstract situation where there are
two objects to be visualized, one of a type with two represen-
tation kinds (denoted by a and b, respectively, with a~b) and
one of a type with three representation kinds (denoted by 1,
2, and 3, respectively). The lattice formed by all the possible
configurations is shown in Figure 7, where the nodes capture
configurations and the arrows capture ~E.

bl

a l b2

a2 ' b3

a3

Figure 7: Size-based inclusion lattice of visual configurations
with different types of objects

We shoukl also mention that there are often object types
that do not need to satisfy Requirements R I-R2. For exam-

ple, in graphs with nonoverlapping nodes, it may be accept-
able for edges to overlap nodes or (cross) other edges. In
these cases, objects of the unrestricted types simply do not
participate in the layout algorithms discussed above.

4.2 Object Groups

Implicit in the entire discussion of earlier sections has been
the assumption that there is a single, given, origin from which
the locations of all objects in the layout are measured, e.g.,
see Figures 5 and 6. There are applications, however, where
the set of visualized objects is not flat as above, but is era.
bedded in a hierarchical structure with objects organized in
groups, groups organized in higher-level groups, and so on.
Each group has its own origin from which the locations of
all objects in the group are measured, and behaves as a unit
within the higher-level group in which it belongs, i.e., it is
considered as a single visual object. As an example, consider
the visualization of a tree structure with every subtree defin-
ing a group (Figure 8) and the location of its root considered
as the origin of all locations for that group. In this case, the
hierarchical structure of groups coincides with the hierarchy
defined by the tree in a natural way.

~.,G~

..... node border

. . . . g r o u p b o r d e r

Figure 8: Grouping of subtrees

As a more complex example, consider the visualization of
a general graph (i.e., not necessarily a tree) with groups de-
fined as user-specified subgraphs occupying rectangular re-
gions (Figure 9) whose center is considered as the origin of
all locations for the corresponding groups. In this case, there
is no natural hierarchy defined by the visualized graph, so the
group hierarchy is orthogonally defined by the user. This is
illustrated in Figure 10, where the graph has striped nodes
and solid arcs while the group hierarchy has 3-D boxes and
dashed arcs. This form of grouping on graphs is very impor-
tant in many applications, so we will use it as an example in
the remaining discussion.

190

ii Pa~ent G ~'OI.Jp ~ ~ iE[~1[~ ~ t[Parent Group [] ~ - ~ - ~ \ ~

i ... ~ i B ~'" \\
1 I I I

::iChildGroulN/ | i , .. ~ { I I i \ t
, , ~ G r a n d e h Id Group l

i~ ii i '~ ! I / I / ' , . - / "
t I I I i / 11

~{i ~ i ~ I ~ X i T ~ / / / / I i l i / / ' ' " '

i
~i A ii , i ~ _ j - - - / " ~

Figure 9: Groups visualized as nested regions Figure 10: The grouping hierarchy, orthogonal to graph struc-
ture

Dealing with multiple visual representations for grouped
objects requires only a small extension to our approach of
Sections 2 and 3. In particular, each individual group has
its own current and anchored configurations of its (imme-
diate) members. At any point, a single group is the focus,
and actions on objects within the group (object creation, dele-
tion, movement, or visual representation change) cause local
layout decisions by following the exact same algorithm de-
scribed earlier. Of course, many layout changes in a group
imply a visual representation change for it within its parent
group and, therefore, recursively trigger the configuration-
change part of the algorithm for the parent.

A major reason for grouping objects is abstraction, so that
users may be able to view the details (members) of a group or
simply view a single object representing the group and ignor-
ing its details. This is naturally achieved within our frame-
work by treating groups as first-class objects that must satisfy
Requirements R1-R4, and associating with them two visual
representations, one "collapsed" and one "expanded", with
the obvious meaning. Any change of a group from one rep-
resentation to the other is simply a configuration change for
the parent group and the earlier layout algorithm is directly
applicable. Continuing on with the example of grouping of
subgraphs of a graph, Figures 11 and 12 show two consecu-
tive collapses of a group and its parent and the resulting lay-
outs.

One complication that arises in the presence of groups is
that the user may change group membership or create groups
at any level of an existing grouping hierarchy. Both types
of actions, especially group creation, may result in exten-
sive changes in group membership and, therefore, configura-
tion structures and location origins. Nevertheless, each such
action may be analyzed into individual o~ect creations and
deletions, which can then be dealt with directly by the general
algorithm.

5 Implementation and Experience

5.1 Implementation
The entire framework and algorithms described above, in-
cluding the generalizations of Section 4, have been imple-
mented in the OPOSSUM visualization tool [6], which is part
of the user interface of the ZOO Experiment Management
System [8]. ZOO is a system under development whose goal
is to allow scientists from arbitrary disciplines manage all
phases of their experimental studies using a single tool. One
of the key issues in ZOO is providing a user interface that is
primarily visual (so that it is intuitiveto users who are not ex-
perts in computer science), relatively generic (so that it can be
used for different styles of visualization and serve the needs
of many disciplines), and able to deal with large numbers of
visual objects (which is common in these applications).

OPOSSUM is part of the ZOO interface that deals with
visualization of database schemas and also forms the basis for
other parts of the interface. It is a generic tool that accepts as
input descriptions of a data model, a visual model (capturing
the structure of some class of visualizations, e.g., graphs,
tables, rectangles contained into each other), and a visual
metaphor that maps some of the elements of the visual model
to elements of the data model. Thus, given a visualization
on the screen the metaphor assigns meaning to its individual
visual objects with respect to some underlying schema.

One may define mixed metaphors, where a single concept
in the data model may be visualized in different ways, using
different concepts in the visual model. The input file describ-
ing the metaphor includes information about which types of
objects should satisfy Requirements R1-R2 and also a size-
based total order ~ on each one of these object types. The
heuristic algorithm of Section 3.2 has been implemented in
OPOSSUM in a generic fashion, without any reference to
specific types of visual objects or kinds of visual represen-
tation. During any OPOSSUM session, all these are instanti-
ated based on the contents of the input model and metaphor

191

P a r e n t G r o u p i

................. S Oh d Q,oo ;i\ i / \
i i b n l l c] u r o u d l i - \ ~ i [................................... 7]

i i
" i i i

!' T ~ / ~ ' ! ' t ChildGr°up2 L Chil

i , _ _ _ ~ "'ti~ .. ~ ~ .. i i L _ _ _ _ _ ~ - - - - - ~ \ \ \ \ ' ~ i

Figure 11: The same graph with °'Grandchild Group" collapsed Figure 12: The same graph with "Child Group2" collapsed

files, and the algorithm proceeds accordingly.
We should emphasize that visualizations of graphs with

groups defined based on subgraphs in rectangular regions, as
in Section 42, can be described as a visual model to be given
as input to OPOSSUM. Screendumps of the OPOSSUM dis-
play showing a large object-oriented schema in graph form,
at two configurations with respect to groups being expanded
or collapsed, are shown below [61]. Figure 13 presents the
schema graph with all groups expanded, while Figure 14
shows the internal structure of two top-level groups allowing
easier study of their details.

5.2 Experience

OPOSSUM has been used by scientists in Soil Sciences,
Biochemistry, and Physics to design relational and object-
oriented schemas for their databases and experiments using a
variety of visual models (mostly graph-based). (The schema
graphs shown in the previous subsection are from a large sim-
ulation experiment on plant grown by the soil scientists.) The
feedback in all cases has been very positive for all aspects of
the system, including the layouts resulting from the algorithm
of Section 3.2. With few exceptions, these layouts have cap-
tured what the users expect. In addition, the notion of groups
in the input visual models and their collapsed/expanded rep-
resentation has proved to be extremely valuable in dealing
with the very large schemas that these scientists generate.

6 R e l a t e d W o r k

To the best of our knowledge, this is the first work that at-
tempts to deal in a generic fashion with multiple visual rep-
resentations of objects and their layouts so that Requirements
R l-R4 are satisfied, especially R4 which calls for taking into
account user placement.

On the other hand, there has been considerable work on
automated layout of graphs and trees [5, 9, 10]. Only [10]
considers user-specified location information, and that is in
the context of trees (maintaining user-specified ordering of

siblings). The EDGE system [3] uses user-provided informa-
tion for graph layout, but this is in the form of explicit con-
straints to restrict or supplement decisions made by the auto-
matic layout algorithm. It requires these constraints for each
spatial relationship, whereas we use user-provided informa-
tion to infer layout guidelines.

Also related is work on showing different amounts of de-
tail in visualizations. Pad++, demonstrates improved ap-
proaches to zooming [2]. Fisheye views of graphs [11, 13] al-
low zooming of one part of a graph more than others. Neither
approach offers abstractions when detail is removed. Magic
lenses [14] offer different amounts of detail, but without lay-
out management to prevent sparse or overlapping informa-
tion. Hy++ [4] uses limited abstraction to better visualize
graphs describing relationships between instances in a logi-
cal database. Groups of instances can be represented by their
type class when there is insufficient space to display all the
instances. Finally, work has been done on applying multiple-
focus fisheye views to allow different parts of a hierarchi-
cally organized visualization to be seen with certain groups
collapsed and others expanded [1]. The main limitation of
this eflbrt is that it only considers visualizations where every-
thing fits on the screen at once, and whenever something gets
larger, everything else must get smaller (or collapse). Also,
the multiple fisheye lens approach requires huge amounts of
processing time (needs two separate workstations to run).

7 C o n c l u s i o n s

We have addressed the problem of user-oriented layout for
large collections of objects that can be viewed through mul-
tiple visual representations. We have devised a general al-
gorithm that uses a small number of layouts that the user
has (directly or indirectly) specified explicitly to derive other
layouts that attempt to follow the user preferences thus ex-
pressed. The algorithm has been implemented in a system
and has been used by real users who have found it quite ef-
fective. The future calls for implementation enhancements

192

Figure 13: The CUPID input schema, partitioned into Groups Figure 14: The same schema, partially abstracted

for optimal performance and a more comprehensive usabil-
ity study of the algorithm.

References

[1] L. Bartram, R. Ovans, J. Dill, M. Dyck, A. Ho, and
W. S. Havens. Contextual assistance in user inter-
faces to complex, time-critical systems: The intelligent
zoom. In Proc. Conference on Graphics" Interfaces,
1994.

[2] B.B. Bederson, L. Stead, and J. D. Hollan. Pad++: Ad-
vances in muttiscale interfaces. In Proc. CH194 Com-
panion to the Conference on Human Factors in Com-
puting Systems, pages 315-316, Boston, MA, April
1994.

[3] K. Bohringer and F. N. Paulisch. Using constraints to
achieve stability in automatic graph layout algorithms.
In Proc. CHI90 Conference on Human Factors in Com-
puting Systems, pages 43-51, April t990.

[4] M. E Consens and A. O. Mendelzon. Hy+: A hygraph-
based query and visualization system. Technical Report
CSRI-285, Computer Systems Research Institute, Uni-
versity of Toronto, June 1993.

[51 G. Di Battista, R Eades, R. Tamassia, and I. G. Tollis.
Algorithms for drawing graphs: An annotated bibliog-
raphy. Computational Geometry: Theory and Applica-
tions, 4:235-282, 1994.

[6] E. Haber, Y. Ioannidis, and M. Livny. Opossum: Desk-
top schema management through customizable visual-
ization. In Proc. 21st International VLDB Conference,
pages 527-538, Zurich, Switzerland, September 1995.

[7] T. Igarashi, S. Matsuoka, and T. Masui. Adaptiverecog-
nition of implicit structures in human-organized lay-
outs. In Proc. of the 11th Symposium on Visual Lan-

guages, pages 258-266, Darmstadt, Germany, Septem-
ber 1995.

[8] Y. Ioannidis, M. Livny, E. Haber, R. Miller, O. Tsatalos,
and J. Wiener. Desktop experiment management. IEEE
Data Engineering Bulletin, 16(1): 19-23, March 1993.

[9] E. B. Messinger, L. A. Rowe, and R. H. Henry. A
divide-and-conquer algorithm for the automatic layout
of large directed graphs. IEEE Trans. on Systems, Man,
and Cybernetics, 21(1): 1-12, 1991.

[10] S. Moen. Drawing dynamic trees. IEEE Software,
7(4):21-28, July 1990.

[11] E. Noik. Exploring large hyperdocuments: Fisheye
views of netsted networks. Technical Report CSRI-
28, Computer Systems Research Institute, University of
Toronto, June 1993.

[12] J. Ousterhout. Corner stitching: A data structuring
technique for vlsi layout tools. IEEE Transactions on
Computer-Aided Design, 3(1):87-100, January 1984.

[13] M. Sarkar and M. H. Brown. Graphical fisheye views of
graphs. In Proc. CHI92 Conference on Human Factors
in Computing Systems, pages 83-91, April 1992.

[14] M. C. Stone, K. Fishkin, and E. A. Bier. The movable
filter as a user interface tool. In Proc. CHI94 Confer-
ence on Human Factors in Computing Systems, pages
306-312, Boston, MA, April 1994.

193

