Graph Sketching and Data Streams
Speaker:Prof. Andrew McGregor
Date:09/01/2013
University:Univ. of Massachusetts
Room :A56
Time:1:00pm (coffee: 12:30)
Slides:
Abstract:
Applying random linear projections, a.k.a. "sketching", has become a standard technique when analyzing high-dimensional data sets. The resulting algorithms are embarrassingly parallelizable and suitable for stream processing. However, existing results have largely focused on vector-based problems (e.g., estimating norms and reconstructing sparse signals) and linear-algebraic problems (e.g., regression and low-rank approximation). In this work, we ask whether the richer combinatorial structure of graphs can also be analyzed via small sketches. We present a range of algorithmic results and applications including the first single-pass algorithm for constructing graph sparsifiers of fully-dynamic graph streams (i.e., where edges can be added and deleted in the underlying graph). Based on joint work with Kook Jin Ahn and Sudipto Guha (SODA 12, PODS 12).